СПОРТИВНАЯ ЭНЦИКЛОПЕДИЯ



Содержание

Бета-Аланин в спортивной медицине

Авторы: д.м.н. Александр Дмитриев, врач-эндокринолог Алексей Калинчев

В последние годы в мире возрос интерес к бета-Аланину (β-Аланин, β-Alanine, БА) как биологически активной аминокислоте, применяемой в качестве фармаконутриента с целью повышения физической готовности как спортсменов, так и обычных лиц, занимающихся физкультурой или подверженных повышенным физическим нагрузкам. В период с 2007 по 2015 год выполнено большое количество исследований у разных категорий лиц: профессиональных спортсменов, военных, обычных тренированных и нетренированных лиц, - для определения эффективности БА, дозировок и схем использования. На основании этих работ сформулированы рекомендации для однократного (острого) и курсового применения БА, сочетания с другими макро-, микро- и фармаконутриентами. В то же время, в отечественной литературе крайне мало работ, посвященных данному вопросу, что затрудняет практическое применение БА. Данный обзор предназначен для восполнения пробела в этом плане и создания основы для будущих российских рекомендаций.

Структура и физико-химические свойства β-Аланина (БА)

Структура Beta-Alanine (Бета-Аланин) и dl-Alpha-Alanine (dl-Альфа-Аланин)

Бета-Аланин (3-аминопропионовая кислота; бета-аминопропионовая кислота; 3-Aminopropionic acid; Beta-Aminopropionic acid) имеет молекулярный вес 89,1 г/моль, чрезвычайно высокую растворимость в воде 545 г/л (при 25оС). Растворимость в воде L-Аланина (альфа-Аланина) при той же температуре - 166 г/л.

Альфа- и бета- Аланин – изомеры, имеют одинаковую формулу С3Н7NO2, но молекулярная структура у них разная. У альфа-Аланина амидная группа прикреплена к центральному углеродному атому, в то время как у бета-Аланина – к концевому углеродному атому. Это обусловливает различные химические свойства. В частности, температура плавления альфа-Аланина – 314оС, бета-Аланина – 196оС.

Экзогенное введение β-Аланина и метаболические процессы в организме

Фармакокинетика

В работе R.C.Harris и соавторов (2006) на 28 здоровых молодых мужчинах (возраст 33,5±9,9 года; вес 80,2±17,1 кг) исследовалась динамика концентрации БА в плазме крови после перорального его введения в нескольких вариантах.

  • Исследование 1. Однократное введение БА (n=6): A) БА в виде дипептида с гистидином (эквивалентно 40 мг/кг веса тела) в курином бульоне; B) 10 мг/кг веса тела, C) 20 мг/кг веса тела и D) 40 мг/кг веса тела в виде препарата Карнозин (CarnoSyn, NAI, USA, бета-Аланин-L-Гистидин).
  • Исследование 2. Двухнедельное введение БА (n=6) в дозе 10 мг/кг веса тела 3 раза в день (три приема БА с 9.00 утра с интервалом 3 часа).
  • Исследование 3. Четырехнедельное введение БА или Карнозина (n=16) 4 раза в день по 800 мг БА или плацебо для оценки влияния хронического введения БА на биохимические и гематологические показатели крови.
Рис.1. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после однократного перорального введения в дозах 10 (белые кружки), 20 (черные треугольники) и 40 (белые ромбы) мг/кг. (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.

В исследовании 1 с однократным введением различных доз БА выявлено, что доза 40 мг/кг БА вызывает побочные эффекты в виде покраснения и покалывания, которые развиваются через 20 мин после перорального применения и продолжаются в течение 1 часа, после чего бесследно исчезают. Эти проявления возникают первично на ушах, лбе, коже черепа, и распространяются далее на нос, руки, спину и ягодицы. Аналогичные, но гораздо менее интенсивные и кратковременные проявления, отмечены и в дозе 20 мг/кг веса тела, и достаточно редко – в дозе 10 мг/кг (ориентировочная фиксированная средняя доза 800 мг на прием). Пики концентраций БА (рис.1) для всех исследуемых доз наблюдались в интервале 30-40 минут, при этом максимальная концентрация БА в плазме отмечалась в дозе 40 мг/кг (833,5±42,8 мкмол/л на 40-ой минуте), что в 2,2 раза превышает максимальную концентрацию в дозе 20 мг/кг. Эффект дозы 10 мг/кг был очень мал. Затем концентрация БА в плазме быстро снижается в течение часа в дозе 20 мг/кг, и 1,5-2 часов – в дозе 40 мг/кг. Время полужизни (Т1/2) для всех введенных доз составляет около 25 минут. Результаты показали, что имеются существенные различия в абсорбции и динамике содержания БА в плазме между пероральным введением БА в чистом виде или в растворе куриного бульона (рис.2).

Рис.2. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после однократного перорального введения БА в чистом виде в дозе 40 мг/кг (белые ромбы), и в такой же дозе в составе куриного бульона (черные квадраты). (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.

Из графиков видно, что куриный бульон замедляет всасывание БА, снижает пик его концентрации в плазме крови, но пролонгирует время повышения концентрации. Так, пик концентрации в плазме при введении БА в составе куриного бульона примерно в два раза ниже, чем при введении БА в чистом виде (427,9±66,1 мкмол/л на 90-ой минуте, и 833,5±42,8 мкмол/л на 40-ой минуте, соответственно).

В исследовании 1 оценивалась также потеря введенного перорально БА с мочой в зависимости от дозы. Потери составили 0,6±0,09%, 1,5±0,4% и 3,6±0,5% для доз 10, 20 и 40 мг/кг, соответственно.

Рис.3. Динамика изменения (по оси абсцисс – время в час) концентрации β-Аланина (БА) в плазме крови человека (по оси ординат – мкмол/л) после трехкратного перорального введения БА (с интервалом в три часа) в дозе 10 мг/кг в первый (черные треугольники) и в 15-й день (белые ромбы). (по R.C.Harris и соавт., 2006). Остальные объяснения в тексте.

В исследовании 2 с двухнедельным введением БА в дозе 10 мг/кг веса тела 3 раза в день (три приема БА с 9.00 утра с равными интервалами в 3 часа) и примерной разовой дозой 800 мг выявлено (рис.3), что концентрация БА в плазме после каждого приема препарата успевала вернуться к исходным значениям (через 3 часа) перед следующим приемом. Побочные эффекты, характерные для более высоких доз и, частично, для данной дозы при первом применении, при повторных приемах уже не проявлялись. Пик концентрации БА в плазме после приема дозы 10 мг/кг составлял такую же величину, что и в исследовании 1.

В исследовании 3 с 4-х недельным введением БА (4 раза в день по 800 мг, т.е. примерно 10 мг/кг веса) не выявлено каких-либо изменений биохимических и гематологических показателей в плазме крови, а также проявлений побочных эффектов. Параллельно в течение 4-х недель приема препарата происходило нарастание содержания карнозина в мышечной ткани с исходных 22,7±1,1 ммол/кг/дм до 33,4±4,0 ммол/кг/дм к концу 4-ой недели (в среднем +47%). Это расценивается в качестве положительного эффекта в плане регуляции рН мышечных клеток, обеспечения нормального перехода мышц из состояния отдыха в рабочее (тренировочное) состояние, и наоборот, а также снижения лактата.

В связи с выявленным снижением выраженности и частоты побочных эффектов БА при замедлении всасывания в кишечнике, были созданы ретардные формы с постепенным высвобождением БА (таблетки, порошки). Изучению фармакокинетики и связанных побочных эффектов одной из таких форм БА в виде таблеток (slow-release - SR) c постепенным выделением БА посвящена работа J.Decombaz и соавторов (2012). В рандомизированном одиночном-слепом исследовании на 11 здоровых добровольцах сравнивались основные фармакокинетические параметры однократного утреннего введения обычного водного раствора БА и ретардных таблеток в дозе 1,6 г (табл.1).

Таблица 1. Сравнительный фармакокинетический анализ однократного болюсного введения двух пероральных форм БА (быстрое и медленное высвобождение активного вещества). Примечания: Сmax (мкмол/л) – максимальная (пик) концентрация БА в плазме крови; Тmax (мин) – время достижения максимальной концентрации в плазме крови; AUC (мкмол/л/час) – площадь под кривой концентрация/время; Ka (мин) – константа скорости абсорбции; Tlog (мин) – время первого появления БА в плазме; Т1/2 (мин) – время полужизни БА. TABa – таблетки с замедленным высвобождением БА; REFb – водный раствор БА сравнения (референтный). По J.Decombaz и соавт. (2012).

Как видно из таблицы 1, величина пика концентрации (Сmax) при приеме ретардных таблеток была примерно в три раза ниже, чем в случае водного раствора, а время его достижения (Тmax) – в два раза дольше (1 час против 0,5 часа). В то же время не выявлено различий в площадях под кривыми «концентрация/время», снижались потери БА с мочой (202 против 663 мкмол, Р<0,0001) и повышалось удержание БА в организме (98.9% против 96.3%, Р<0.001). Побочные эффекты, описанные ранее как покраснение и покалывание в определенных участках кожи, и соответствующие по времени максимуму концентрации БА в плазме крови, были значительно менее выражены при приеме ретардных таблеток (Р<0,001), а по частоте возникновения приближались к эффекту плацебо. Таким образом, применение ретардных форм, обеспечивающих замедленное высвобождение БА в кишечнике, позволяет избежать побочных эффектов неретардированных форм БА при сохранении величины основного показателя (для хронического применения вещества) – площади под кривой «концентрация-время». Эти факторы обеспечивают, по крайней мере для тех спортсменов, которые болезненно реагируют на покраснение кожи и парестезии при применении повышенных доз БА, несомненные преимущества SR-форм.

Метаболизм

Особенности метаболизма БА обусловлены его химической структурой. На рисунке 4 представлено сходство БА с некоторыми другими аминокислотами и процесс образования карнозина в скелетных мышцах.

Рис.4. Сходство химической структуры БА, Глицина и ГАМК (вверху) и биохомический процесс образования Карнозина в скелетных мышцах (внизу). По J.Caruso и соавт., 2012.

БА – непротеиногенная аминокислота (не участвует в синтезе белков) и продуцируется в самом организме в процессе распада пиримидинов, декарбоксилирования кишечной микрофлорой L-аспартата и трансаминирования при взаимодействии 3-оксопропаната и L-аспартата (K.E.Tiedje и соавт., 2010). Синтез БА происходит в печени в процессе необратимой деградации тимина, цитозина и урацила. После синтеза БА транспортируется в мышечные клетки, проникает в сарколемму за счет натрий и хлор-зависимой транспортной системы, которая может быть универсальной для сходных по химической структуре аминокислот (рис.4). Аналогичный процесс происходит и в ЦНС, где БА играет роль нейропередатчика и нейромодулятора, имеет идентифицированные места связывания с рецепторами ГАМК, NMDA и глицина в гиппокампе и некоторых других структурах, участвующих в формировании когнитивных функций.

Внутри возбудимых клеток БА может формировать дипептидную связь с гистидином в процессе АТФ-зависимой реакции и действия фермента карнозин-синтетазы, образуя карнозин (рис.4). Синтез карнозина регулируется величиной поступления БА внутрь мышечных волокон (W.Derave и соавт., 2010), уровнем активности карнозин-синтетазы и, в отсутствие достаточного поступления БА с пищей, печеночным синтезом БА и его транспортом в скелетные мышцы (R.C.Harris и соавт., 2012). Нормальный уровень внутриклеточного карнозина 20-30 ммол/кг-1 сухого веса тела, у мужчин он выше, чем у женщин, с возрастом понижается в среднем на 47% к 70 годам по сравнению с 20-летними лицами. Существует прямая корреляционная связь возрастного снижение БА и тестостерона. Карнозин, как и БА, выполняет множество функций: снижение окисления липидов и протеинов; повышение АТФ-азной активности; регуляция функции макрофагов; защита клеточных мембран; образование хелатов двухвалентных катионов и др., в том числе, связанных с процессом старения. Важным аспектом является участие в нейрогенной регуляции, особенно, в процессах памяти.

Фармакодинамика (механизм действия)

Карнозин (β-Аланил-L-Гистидин) – естественный дипептид организма, образующийся, как уже отмечалось выше, в результате соединения бета-Аланина и Гистидина при помощи карнозин-синтетазы. Депо карнозина находится в скелетных мышцах. Распад этого соединения происходит под влиянием фермента карнозиназы, которая локализуется в сыворотке крови и ряде тканей, но отсутствует в мышечной ткани (С.Sale и соавт., 2010). Поэтому пероральное введение карнозина – неэффективный метод повышения содержания уровня внутримышечного карнозина, т.к. поступающий через кишечник карнозин в конечном счете полностью метаболизируется перед попаданием в мышцы (M.L.Gardner и соавт., 1991). Роль Карнозина как внутриклеточного протонного буфера впервые была выявлена еще в 1953 году в СССР С.Е.Севериным (S.E.Severin и соавт., 1953), который показал, что отсутствие карнозина приводит к быстрому развитию усталости и ацидоза. По показателю логарифма константы диссоциации (pKa) равному 6.83 и высокой концентрации в мышцах карнозин представляется более эффективным буфером, чем два других физико-химических буфера - бикарбонат (pKa 6.3) или неорганический фосфат (pKa 7.2), при превышении физиологического диапазона рН. Предварительные данные показывают, что вклад карнозина в буферизационную способность мышц составляет от 7 до 40%. Данные о способности пищевых добавок БА увеличивать внутримышечную концентрацию карнозина и снижать посттренировочную редукцию рН (ацидоз, вызванный физической нагрузкой), подтверждают концепцию о значительной роли карнозина в буферных системах мышечной ткани.

Потенциальная физиологическая роль карнозина не ограничивается функцией протонного буфера. В процессе повышенных физических нагрузок образуется большое количество реактивных кислородных радикалов, которые вносят существенный вклад в развитие утомляемости и мышечных повреждений. Карнозин препятствует действию этих субстанций, выступая в роли антиоксиданта (G.I.Klebanov и соавт., 1998), а также связывая в виде хелатных соединений ионы таких металлов как медь и железо.

Эффекты пищевых добавок БА на функциональное состояние и показатели физической готовности здоровых лиц

Исследования у мужчин

J.R.Hoffman и соавторы (2008) исследовали влияние 30-дневного приема пищевых добавок БА в дозе 4,8 г/день на физическую готовность и эндокринные сдвиги у 8 хорошо тренированных мужчин. Протокол однократного теста состоял из 6 циклов по 12 приседаний с 1,5 минутными интервалами отдыха между циклами и выполнялся до и после курса применения БА. Перед и после проведения теста (сразу, через 15 и 30 минут после окончания теста) в крови испытуемых регистрировались такие показатели как концентрация гормона роста, тестостерона и кортизола. В группе с БА после 4-х недель приема по сравнению с группой плацебо отмечены следующие положительные сдвиги: 22 % увеличение количества выполняемых приседаний, повышение мощности движений (на 20-25%) (p < 0,05). Концентрация гормона роста и кортизола повышалась в обеих группах, без изменения концентрации тестостерона. Результаты показывают, что БА при 4-х недельном приеме значительно повышает мышечную выносливость в процессе тренировок у хорошо физически подготовленных лиц, но не влияет на эндокринный ответ организма на физическую нагрузку.. Авторы делают заключение, что доза БА 4.8 г/день в течение 30 дней повышает объем выполняемой работы и мощность мышечных усилий без изменения нормального гормонального ответа на физическую нагрузку.

T.Jordan и соавторы (2010) провели первое исследование влияния пищевых добавок БА на начальное накопление лактата крови (OBLA) в процессе нарастающего по интенсивности бега на тренажере (бегущая дорожка). В этом рандомизированном двойном-слепом плацебо-контролируемом исследовании приняли участие 17 физически подготовленных мужчин (возраст 24.9±4.7 года, рост 180.6±8.9 см, вес 79.25± 9.0 кг). Тест проводился до и после 28-дневного приема БА в дозе 6 г/день, в качество плацебо использовалась аналогичная доза мальтодекстрина. Регистрировались следующие показатели: ЧСС, % максимального уровня увеличения ЧСС, %VO2макс и концентрация лактата крови. За время исследования в группе БА отмечено достоверное увеличение массы тела в среднем на 0,4 кг, без изменений данного показателя в группе плацебо. На основании изменений регистрируемых показателей до и после приема БА на фоне физических нагрузок, авторы делают заключение, что БА в дозе 6 г/сут увеличивает переносимость физических нагрузок и снижает первичное накопление лактата в крови, однако редуцирует показатель VO2 макс (характеризует способность поглощать и усваивать кислород воздуха).

C.Sale и соавторы (2011) исследовали эффект совместного применения БА в дозе 6,4 г/день и натрия бикарбоната в течение 4-х недель по тесту физической нагрузки на велотренажере у 20 мужчин (возраст 25±5 лет, рост 179 ± 6 см, вес 80.0±10.3 кг) по сравнению с плацебо. До начала теста, сразу после него и через 5 минут оценивались: показатели максимальной мощности; время работы до истощения; общий объем выполненной работы; рН, лактат и бикарбонат крови. БА повышал показатели работоспособности в среднем на 6,5-16,2% (P ≤ 0,01). Комбинированное введение БА и бикарбоната натрия снижает посттренировочное накопление лактата крови. Результаты показали, что БА улучшает показатели физической готовности и биохимию крови в тесте на велотренажере. Авторы делают заключение, что пищевая добавка БА в дозе 6.4 г/день снижает утомляемость и повышает физическую готовность по тесту на велотренажере.

В работе I.P.Kendrick и соавторов (2009) у 7 мужчин-студентов осуществляли ежедневный прием БА в дозе 6,4 г/день в течение 4-х недель. Эффект БА сравнивался с плацебо (n=7). Испытуемые проводили изокинетическую тренировку правой ноги (Т), в то время как левая нога (UT) не участвовала в тренировках и использовалась в качестве контроля. Каждая тренировочная сессия состояла из 10 подходов по 10 сгибаний под углом 90 гр. и полным распрямлением до 180 гр. (изокинетический динамометр Kin-Com) с 1-минутным отдыхом между подходами. Проводилась мышечная биопсия (vastus lateralis) до начала приема БА и после окончания приема для отдельного исследования разных типов мышечных волокон. Кроме того, определялась концентрация внутримышечного карнозина. Увеличение содержания карнозина отмечено как в ноге, подверженной тренировкам, так и в интактной, однако в первом случае оно было примерно в 1,5 раза выше. Данное явление касалось всех типов волокон без значимых различий между ними. В случае плацебо не отмечено изменений в концентрации карнозина в мышцах ни той, ни другой ноги. Авторы заключают, что биодоступность БА – главный фактор регуляции синтеза карнозина в мышцах.

Исследования у женщин

J.R.Stout и соавторы (2007) изучили влияние 28-дневного приема БА на физическую работоспособность 22 женщин (возраст 27,4±6,1 года) на уровень порога утомления (fatigue threshold - PWCFT – рассчитывается на основе амплитуды ЭМГ латеральной мышцы бедра по методу H.A.deVries и соавторов 1987), вентиляционный порог (VT), максимальное потребление кислорода (VO2MAX), и время работы до отказа (ТТЕ). Участники были рандомизированы на две группы: БА и плацебо. Применялся велоэргометрический тест до и после курса применения исследуемых веществ. В результате применения БА отмечалось достоверное (Р<0.05) увеличение VT, PWCFT и TTE на 13,9%, 12,6% и 2,5%, соответственно. В группе плацебо изменений не обнаружено. Ни в одной группе показатель VO2макс не изменялся. Результаты подтверждают способность БА замедлять развитие утомляемости и увеличивать время переносимости высоких физических нагрузок (выносливость) в тесте велоэргометрии. Однако, БА не повышает максимальную аэробную мощность, оцениваемую по изменениям VO2макс. Авторы делают заключение, что БА улучшает субмаксимальную физическую готовность и выносливость у молодых женщин, которое может объясняться повышением буферизационной способности мышечной ткани за счет накопления карнозина. Таким образом, БА при приеме в течение 28 дней у женщин способствует меньшей утомляемости и большей работоспособности на пике утомления, но снижает потребление кислорода.

Сравнительная оценка эффективности БА у тренированных и нетренированных лиц (в рамках одного исследования)

V.de Salles Painelli и соавторы (2014) в Бразилии провели исследование у 40 молодых мужчин, разделенных на две равные по численности группы (тренированные и нетренированные), которые получали пищевые добавки БА в дозе 6,4 г/день (две желатиновые капсулы по 800 мг 4 раза в день) в течение 4-х недель, либо плацебо (декстроза в эквивалентной дозе). В каждую капсулу добавлялось 100 мг карбоксиметилцеллюлозы для замедления всасывания БА в кишечнике и снижения парестезий. В процессе исследования регистрировалось большинство антропометрических данных, а протокол тестирующей физической нагрузки включал 4 подхода по 30 сек. работы на велотренажере (модифицированный вариант Wingate-теста) с эргометрией. Общий объем выполняемой работы под влиянием БА увеличивался как в группе нетренированных, так и тренированных испытуемых, но достоверно снижался в группе с плацебо у нетренированных лиц, и не изменялся в группе с плацебо у тренированных (рис.5). БА также повышал средние показатели мощности в 4-ом подходе у нетренированных лиц, и в большинстве подходов – у тренированных лиц. В группах с плацебо изменений мощности не отмечено. Таким образом, БА – эффективная пищевая добавка для улучшения показателей готовности при выполнении повторяющихся кратковременных упражнений как у тренированных, так и у нетренированных лиц.

       






Комментарии: (0)


Оставить свой комментарий











© sportguardian.ru Все права защищены!
Почта для связи: info@gdedollar.ru