СПОРТИВНАЯ ЭНЦИКЛОПЕДИЯ


11.11.2019 17:10

Источник:
Эндокриная система, спорт и двигательная активность.
Перевод с англ./под ред. У.Дж. Кремера и А.Д. Рогола. - Э64
Издательство: Олимп. литература, 2008 год.

Реакция эндокринной системы человека на физическую нагрузку в условиях холодового стресса

Общая характеристика реакции эндокринной системы организма в ответ на воздействие холодового стресса в сочетании с физической нагрузкой

Сочетание воздействия низких температур и выполняемых при этом физических упражнений вызывает выраженные физиологические реакции организма. К ним можно отнести увеличение метаболического теплообразования и сужения сосудов, направленные на поддержание температуры тела, изменения водного баланса, а также изменения в соотношении используемых энергетических субстратов, направленные на обеспечение возросшей активности метаболических процессов. Многие из этих физиологических реакций связаны с изменениями секреции и содержания гормонов. Считается, что причинами изменений концентрации гормонов в плазме крови под действием холодового стресса могут быть изменения интенсивности секреции, клиренса и распределения в организме. Установить достаточно точно индивидуальный вклад каждого из этих процессов на основании результатов проведенных исследований не представляется возможным. Основная масса исследований, посвященных изучению влияния холодового воздействия на секрецию гормонов, была выполнена в состоянии покоя и количество таких исследований по-прежнему остается относительно небольшим. Совместное воздействие холода и физической нагрузки на эндокринную систему изучено еще меньше. Основной задачей данной главы является исследование эндокринного ответа на воздействие физических упражнений в условиях холодового стресса у человека. Эксперименты на животных рассматриваться не будут. Вместе с тем проанализируем реакцию организма на воздействие низких температур в состоянии покоя, что позволит получить общее представление и данные для сравнения с результатами исследования эффективности физической нагрузки в условиях пониженных температур.

Катехоламины

В случае воздействия холода на организм человека происходит повышение теплообразования за счет сократительного термогенеза и уменьшения кровообращения в кожных кровеносных капиллярах, которое ограничивает потери тепла за счет радиации в окружающую среду. Такие физиологические изменения опосредованы симпатической нервной системой (СНС) и направлены на защиту организма от снижения температуры тела. Уровень норадреналина в плазме крови используют в качестве показателя срочной реакции СНС, поскольку сильный Холодовой стресс сопровождается секрецией этого гормона из периферических нервных окончаний. Норадреналин оказывает свое терморегулирующее воздействие через β-адренергические рецепторы скелетных мышц (метаболическое теплообразование) и а-адренергические рецепторы гладких мышц (сужение кровеносных сосудов). Содержание норадреналина в плазме в ответ на холодовое воздействие в состоянии покоя может возрастать в 2 — 6 раз (Wilkerson ct al., 1974; Johnson et al., 1977; O'Malley ct al., 1984; Wang ct al., 1987; Wcib et al., 1988; Frank et al., 1997; Armstrong, 1998; Castellan! ct al., 1998, 1999a, 1999b), наряду с этим возрастает и выделение его с мочой (Arnett, Watts, I960; Lamkc ct al., 1972), что представляет собой 24-часовой показатель активности СНС. Вклад изменений температуры внутренней среды организма и кожи в повышение уровня норадреналина при холодовом воздействии в состоянии покоя составляет приблизительно 2 : 1, т. с. возрастание норадреналина на 67 % обусловлено снижением температуры тела и на 33 % — снижением температуры кожных покровов (Frank et al., 1999).

Концентрация норадреналина при совместном действии холода и физической нагрузки также возрастает (Castcllani ct al., 2001), и это естественно, однако характер реакции, вероятнее всего, зависит от снижения температуры ядра. При выполнении упражнений с высокой интенсивностью нагрузки (-60 % V02max) в течение двух часов в сухом помещении с температурой 15 'С и в условиях повышенной влажности, ветра и температуры 5 "С уровень норадреналина в плазме не отличался (Weller et al., 1997а). Однако при уменьшении интенсивности упражнений до уровня ниже 30 % V02max и последующего снижения температуры ядра, в условиях более низкой температуры концентрация норадреналина была выше на 240 %. В то же время, если интенсивность двигательной активности оставалась относительно высокой (60 % V02max), а продолжительность занятия возрастала (4 ч), вследствие чего температура ядра снижалась, в условиях повышенной влажности и более низкой температуры уровень норадреналина был выше на 45 %. Было обнаружено, что занятие плаванием в воде при температуре 21 "С на протяжении 1 ч (ректальная температура снижается на 0,8 °С) сопровождается увеличением концентрации норадреналина, которое на 87 % выше по сравнению с плаванием в воде при температуре 27 "С (Galbo et al., 1979). Подобным образом при субмаксимальных и максимальных физических нагрузках наибольшие абсолютные изменения уровня норадреналина наблюдались в случае снижения температуры ядра и кожи (Bergh et al., 1979).

Соотношение температуры кожи и интенсивности двигательной активности также может влиять на концентрацию норадреналина в плазме при совместном воздействии физической нагрузки и холода. Уровень норадреналина в плазме повышается вдвое при температуре 5 *С (по сравнению с 21 *С) в результате занятий на велоэргометре с нагрузкой 50 Вт, однако не 150 Вт (Stevens et al., 1987). Далее было показано, что если регулярная двигательная активность начинается с нагрузки невысокой интенсивности (30 % V02max) в условиях воздействия холода и повышенной влажности, уровень норадреналина через 2 ч в 3 раза выше, даже если ректальная температура при этом не отличается от таковой при умеренной температуре и влажности воздуха (Weller et al., 1979b). Температура кожи в этих исследованиях с использованием низкой интенсивности нагрузки в условиях холодового воздействия была на 5—8 'С ниже. Однако при занятиях на велоэргометре с нагрузкой 50—100 % V02max никаких отличий в содержании норадреналина в крови у лиц, занимавшихся в обычных условиях и при холодовом воздействии, обнаружено не было (Quirion ct al., 1989; Anderson, Hickey, 1994).

Влияние холодового стресса на уровень адреналина менее изучено. В отличие от норадреналина уровень адреналина в плазме не увеличивается во время погружения в холодную воду в состоянии покоя (Weib ct al., 1988), введении холодного солевого раствора (Franl et al., 1977) и воздействии холодного воздуха (Wang et al., 1987; Armstrong, 1998). В то же время было обнаружено, что уровень адреналина повышается при снижении температуры ядра тела после введения холодного солевого раствора на 1 °С (температура кожи при этом оставалась нормальной) (Frank et al., 2002). В этой работе вместо периферической венозной крови (локтевая вена) анализировали состав центральной венозной крови, что послужило основанием для предположения о том, что этот источник крови расположен ближе к месту выделения адреналина, поэтому на его содержание в крови не влияет эффективность клиренса. Авторы данного исследования высказали мысль о том, что причиной отсутствия изменений уровня адреналина в других работах является метод забора крови для анализа. Если холодовое воздействие приводит к повышению уровня адреналина, то это, вероятнее всего, посредством активации β-адренергических рецепторов будет способствовать усилению сократительного термогенеза и вовлечению в энергетический обмен жира.

Концентрация адреналина в плазме в результате совместного воздействия холода и физической нагрузки, по сравнению с условиями умеренной температуры, повышается в случае снижения температуры ядра подобно концентрации норадреналина. Уровень адреналина после 4 —6 ч пребывания в условиях низкой температуры и повышенной влажности был повышенным по сравнению с температурой 15 *С и нормальной влажностью воздуха, разность ректальных температур при этом составляла 0,4 *С (Weller et al., 1997b). Аналогичным образом повышение уровня адреналина в плазме на 71 % наблюдали после занятия плаванием при температуре воды 21 *С по сравнению с температурой воды 27 *С (Galbo et al., 1979). Однако если температура ядра не отличалась при низкой и умеренной температурах, то концентрация адреналина была такой же (Weller et al., 1997а, 1997b) или ниже (Parkin et al., 1999).

Очень важно учитывать, что холодовая акклиматизация может оказывать влияние на характер изменений уровня адреналина в случае совместного воздействия физической нагрузки и холода, несмотря на то что пи в одном исследовании прямой проверки данного утверждения не проводили. В то же время в нескольких исследованиях изучали эффект Холодовой акклиматизации на изменения норадреналина во время воздействия холода в состоянии покоя.

Существует три различных типа акклиматизации: привыкание, метаболическая и теплоизолирующая акклиматизация (Young et al., 1996). Привыкание к холоду, которое характеризуется мышечной дрожью и активацией мышц, сокращающих сосуды, обычно происходит после относительно мягкого холодового воздействия, жесткость которого не вызывает снижения температуры ядра тела. Метаболическая акклиматизация определяется как более высокий уровень метаболической активности. Это явление наблюдали в одном исследовании после 6 недель средней степени холодового воздействия. Теплоизолирующая акклиматизация — результат повторяющегося понижения температуры ядра тела, следствием чего является снижение температуры ядра тела, которое вызывает усиление сужения периферических кровеносных сосудов, понижение температуры ядра тела, а также, возможно, сдвиг порога для начала стимуляции сократительного термогенеза таким образом, что мышечное сокращение не начинается до тех пор, пока не будет достигнута наименьшая средняя температура тела. В случае использования для формирования холодового привыкания (при минимальном снижении температуры тела на -0,5 °С) многократных воздействий холодом на организм уровень норадреналина в плазме снижался во время стандартизованного теста с использованием холодной комнаты (Hesslink et al., 1992; Leppaluoto et al., 2001). Однако, когда для акклиматизации занимающихся нагрузками 25 риз в холодную воду (температура 18 "С), после этого наблюдалось существенное снижение температуры тела (на -1 'С), что приводило к термоизолирующей акклиматизации (снижение температуры ядра и кожи). После акклиматизации уровень норадреналина в плазме во время стандартной процедуры воздействия холодом был существенно выше по сравнению с исходным уровнем до акклиматизации (Young et al., 1986).

Гормоны щитовидной железы

Гормоны щитовидной железы — трийодтиронин (Т3) и тироксин (Т4) — имеют важное значение для поддержания основного обмена веществ и термогенеза. Предполагается, что теплообразующий эффект этих гормонов связан с увеличением потребления энергии натрий-калиевым насосом. Кроме того, гормоны щитовидной железы являются вазодиляторами, следовательно, они могут влиять на теплоотдачу в периферических тканях организма при холодовом воздействии.

Воздействие холодного воздуха (4 — 10 "С) продолжительностью от 30 мин до 3 ч не оказывало воздействия на уровень тироидстимулирующего гормона, а также на Т3 и Т4 (Hershman et al., 1970; Wilson et al., 1970; Nagata et al., 1976; Tuomisto et al., 1976; Leppaluoto et al., 1988). Однако ряд авторов (Golstein-Golaire et al., 1970; O’Malley et al., 1984) отмечают повышение уровня этих гормонов после кратковременного холодового воздействия, тогда как другие (Solter, Misjak, 1989) обнаружили понижение тироидстимулирующего гормона, общего Т4, обратного Т3 и общего Т4 после 8-часового рабочего дня в условиях пониженной температуры. Кратковременный Холодовой стресс не должен вызывать значительного повышения или снижения концентрации этих гормонов в плазме, поскольку в большинстве своем они находятся в связанном состоянии с белками плазмы, и такие комплексы приставляют собой обширный резерв гормонов щитовидной железы (Goodman, 1994).

Несколько исследований были посвящены изучению изменений уровня гормонов щитовидной железы в условиях контролируемого холодового стресса. Характер ответной реакции может определяться рядом факторов, включая продолжительность и интенсивность двигательной активности: Т4 возрастает после 6—9 ч воздействия низкой температуры и повышенной влажности при низкой интенсивности физической нагрузки (Dulac et al., 1987; Castellani et al., 2002), тогда как уровень T3 остается неизменным или повышается. Продолжительное совместное воздействие холода и физической нагрузки, вероятнее всего, приводит к повышению уровня гормонов щитовидной железы, направленному на обеспечение метаболизма липидов, поскольку они амплифицируют бета-адренергическую реакцию СНС. Температура ядра, очевидно, никак не влияет на эти эффекты, поскольку в одном из исследований она достигала всего лишь 36,9 °С (Castellani et al., 2002). Уровень тироидстимулирующего гормона не изменялся в случае низкой интенсивности физической нагрузки, однако возрастал на 90 % в результате занятия плаванием при температуре воды с 20 ‘С со средней интенсивностью нагрузки продолжительностью 30 мин (Deligiannis et al., 1993). Подобным образом после плавания в холодной воде на 46 % повышался уровень свободного Т4. Был ли такой эффект результатом центрального (ядро) или периферического (кожа) воздействия, неизвестно, поскольку об этих показателях ничего не сообщалось. Повышение уровня Т3 и Т4 после совместного воздействия холода и физической нагрузки, вероятнее всего, обусловлено стимулирующим воздействием последней, а не Холодовым стрессом, поскольку сильное холодовое воздействие оказывает на эти гормоны незначительный эффект.

Поскольку привыкание к холоду приводит к ослаблению мышечной дрожи и повышению температуры кожных покровов, уровень гормонов щитовидной железы также может изменяться, так как они принимают участие в термогенезе и расширении сосудов. В одном из исследований испытуемых подвергали воздействию воздуха при температуре 4,4 °С продолжительностью 30 мин 2 раза в сутки в течение 8 недель (всего 80 раз) (Hesslink et al., 1992). Кроме того, часть участников эксперимента получала дополнительно Т3 с целью искусственного подавления секреции тироидстимулирующего гормона и Т., чтобы получить возможность оценить относительное значение этих гормонов в индукции Холодовой акклиматизации. Повторяющееся холодовое воздействие, действительно, вызывало привыкание, о чем свидетельствовало снижение потребления кислорода, среднего артериального давления крови и уровня норадреналина после острого холодового стресса. Между группой лиц, получавших дополнительно Т3 (с пониженным уровнем тироидстимулирующего гормона и Т4), и контрольной группой никаких отличий не обнаружено, никаких изменений в концентрации гормонов щитовидной железы у них не наблюдалось. Не выявлено также изменений уровня Т3, Т4 и тироидстимулирующего гормона после ежедневного пребывания при температуре 10 °С в течение 2 ч в течение 11 суток, несмотря на повышение температуры кожи после акклиматизации (Leppaluoto et al., 2001). Было проведено изучение реакции организма 8 мужчин на пребывание при температуре воздуха 1 °С в течение 2 ч до и после Холодовой акклиматизации (Savourey et al., 1994). Акклиматизацию проводили 20 погружениями в ледяную воду по пояс в течение месяца, результатом чего стало снижение ректальной температуры при воздействии холодового стресса после акклиматизации по сравнению с исходными значениями этого показателя. Уровень Т3, Ц и тиреоидстимулирующего гормона в акклиматизационном периоде оставался неизменным. Эти эксперименты показали, что гормоны щитовидной железы не играют особой роли в холодовой аклиматизации, индуцированной на протяжении непродолжительного времени.

Характер изменений, наблюдающийся в случае сравнительно непродолжительных исследований, в некоторой степени отличается от картины изменений у лиц, находящихся на зимовке в Антарктике в течение 8—12 месяцев. Установлено, что пребывание в Антарктике приводит к повышению уровня тиреоидстимулирующего гормона после стимуляции тиреолиберином, понижению уровня Т3, тогда как уровень Т4 не изменяется (Reed et al., 1986, 1988, 1990). В другом исследовании снижение уровня Т3 связывалось с периодом антарктического лета, когда уровень двигательной активности был более высоким, а повышенный уровень этого гормона наблюдался во время антарктической зимы, в период наименьшей освещенности и наиболее низких температур (Sawhney et al., 1995). Интересно, что если зимовщики получали дополнительно Т4, снижение познавательных способностей у них было менее выраженным (Reed et al., 2001). Кроме того, для лиц, получавших дополнительно Т4, была характерна меньшая утомляемость и спутанность мышления. Следует иметь в виду, что лица, временно пребывавшие в Антарктике, подвергались множеству различных воздействий, включая низкую температуру окружающей среды, экстремальный световой день, значительные колебания уровня двигательной активности, высокий уровень электромагнитного излучения и изоляцию. Таким образом, на основании результатов этих исследований трудно определить, были ли вызваны изменения уровня гормонов щитовидной железы исключительно Холодовым воздействием либо сочетанием всех упомянутых факторов.

Функцию щитовидной железы традиционно связывают с чувствительностью к холоду, т. е. лица с недостаточностью функции щитовидной железы обычно жалуются на ощущение холода (Larsen et al., 1998). Недавно было показано, что у женщин, которые жалуются на ощущение холода, концентрация Т4 на 29 % ниже по сравнению с теми, кто его не ощущает (Nagashima et al., 2002). С такой повышенной чувствительностью к холоду взаимосвязаны более низкая температура пальцев рук и уровень метаболизма. Тем не менее значение гормонов щитовидной железы во время острого холодового воздействия на организм человека до сих пор до конца не выяснено. Поразительно мало данных в отношении острой терморегуляторной реакции во время холодового воздействия у лиц с гипотиреозом (один больной; Thompson et al., 1971). После приема Т4 у этого больного наблюдалось усиление потребления кислорода и замедление снижения температуры кожи, однако изменения температуры ядра тела после 2 ч пребывания при температуре воздуха 10 °С практически не отличались от таковых без приема Т4. Таким образом, гормоны щитовидной железы, по-видимому, оказывают незначительное влияние на тепловой баланс, поскольку одновременно увеличивают выработку тепла и его потерю.

Регуляция водного баланса

Регуляция водного баланса осуществляется при участии нескольких гормонов, включая ренин-ангиотензин-альдостерон, предсердный натрийуретический пептид и аргининвазопрессин (АВП). Для точной регулировки потерь воды и электролитов и поддержания их нормального уровня эти гормоны осуществляют контроль объема крови и осмотическое давление плазмы. Уровень альдостерона и ангиотензина регулируется гормоном ренином, который выделяется юкстагломерулярными клетками почек. Выделение ренина регулируется снижением давления (объема), а также притока ионов натрия и хлора в почки. Повышение уровня аигиотензина и альдостерона увеличивает удержание натрия и воды. Предсердный натрийуретический пептид выделяется миоцитами правого предсердия в ответ на повышение центрального артериального давления/объема и стимулирует выделение натрия и воды ночками. Секреция АВП происходит в задней доле гипофиза в ответ на повышение осмотического давления плазмы либо снижение объема крови, которое воспринимают рецепторы высокого (сонная артерия) или низкого (правое предсердие) артериального давления. АВП непосредственно усиливает реабсорбцию воды в собирательных трубочках почек.

Воздействие низких температур на организм приводит к уменьшению общего объема воды в организме за счет реализации нескольких механизмов, включая индуцированный холодом диурез, потоотделение, респираторную потерю воды, притупление чувства жажды, отсутствие доступной для потребления воды и сознательное ограничение потребления жидкости (O’Brien et al., 1998). Такие потери воды организмом ассоциированы с изменениями объема плазмы и концентрации электролитов, которые могут оказывать значительный эффект на уровень гормонов, регулирующих водно-солевой баланс. Воздействие холода также приводит к увеличению объема крови в центральной системе кровообращения и давления в правом предсердии. Двигательная активность вызывает заметные изменения объема плазмы и концентрации электролитов. Небольшое количество работ было посвящено изучению изменений концентрации гормонов, регулирующих водный баланс, в условиях холодового воздействия, и лишь в одной из них такие изменения анализировали при воздействии физической нагрузки.

Наиболее изученным последствием холодового воздействия на водный баланс организма человека является индуцированный холодом диурез. Более 50 лет назад было высказано предположение о том, что причиной индуцированного холодом диуреза является падение уровня АВП, обусловленное изменениями объема крови в центральной системе кровообращения (Bader et al., 1952). Применение питрессина, аналога АВП, препятствует усилению мочеотделения, которое наблюдается при пониженной температуре и не оказывает влияния на скорость гломерулярной фильтрации, хотя такой эффект наблюдался далеко не всегда (Lennquist, 1972). В случае существенных потерь воды при диурезе, вызванном Холодовым воздействием, должно повышаться осмотическое давление плазмы, однако этого не происходит. Ряд исследований (Lennquist et al., 1974; Wallenberg, Granberg, 1974; Atterhog et al., 1975; Knight, Horvath, 1985; Deuster et al., 1989) показал, что при холодовом воздействии также наблюдается увеличение выделения электролитов с мочой, а это свидетельствует о том, что индуцированный холодом диурез обусловлен изоосмотическими потерями воды. Остается неизвестной только причина увеличения потерь жидкости организмом при пониженных температурах: связано это явление с усилением выделения почками раствора электролитов (главным образом, натрия), либо холодовое воздействие усиливает выделение натрия и воды за счет активации независимых механизмов. Некоторые данные говорят о том, что выделение солей является главной причиной индуцированного холодом диуреза, в случае, когда во время двигательной активности в полевых условиях продолжительностью 48 ч при низкой температуре воздуха участники эксперимента потребляли дополнительные количества NaCl, количество мочи у них было ниже на 30 % по сравнению с контрольной группой, несмотря на потребление равных объемов жидкости в обеих группах (Rogers et al., 1964).

По данным исследований изменений уровня гормонов, регулирующих водный баланс, при холодовом воздействии в состоянии покоя (Segar, Moore, 1968; Hiramatsu et al., 1984; Hassi et al., 1991; Wittert et al., 1992; Hynynen et al., 1993; Nakamitsu et al., 1994; Jansky et al., 1996; Arjamaa et al., 1999, 2000; Sramek et al., 2000) в большинстве случаев активность ренина в плазме крови остается неизменной или снижается, уровень альдостерона и предсердного натрийуретического пептида не изменяется, а концентрация АВП повышается. Уровень выделения натрия в этих исследованиях был повышенным. Индуцированное низкой температурой усиление выделения натрия не было связано с изменениями уровня альдостерона или предсердного натрийуретического пептида, и, возможно, было обусловлено паракринным влиянием уродилятина — вещества, подобного предсердному натрийуретическому пептиду, которое секретируется почками (Nakamitsu et al., 1994; Bestle et al., 1999). Снижение концентрации АВП вызывало усиление экскреции воды, причиной чего являлось увеличение объема крови в центральной системе кровообращения и повышение давления крови в правом предсердии.

Изучению изменений уровня гормонов, регулирующих водный баланс, при совместном воздействии холода и физической нагрузки посвящена всего одна экспериментальная работа (Therminarias et al., 1992). В частности, было обнаружено снижение активности ренина в плазме и повышение уровня предсердного натрийуретического пептида во время выполнения упражнения со ступенчатой нагрузкой до утомления при 10 ”С по сравнению с 30 °С. В случае АВП никаких отличий обнаружено не было. Более высокий уровень предсердного натрийуретического пептида и снижение активности ренина в плазме при температуре воздуха 10 °С были обусловлены увеличением наполнения сердца, вызванным перераспределением крови в системе кровообращения в центральную ее часть.

Кортизол

Кортизол в плазме крови модулирует многие физиологические процессы, которые имеют важное значение для ответа на холодовое воздействие. Сюда относятся: увеличение энерготрат в состоянии покоя, подавление расширения сосудов, увеличение доступности свободных жирных кислот в качестве энергетического субстрата, а также деятельность СНС. Секреция кортизола регулируется адренокортикотропным гормоном (АКТГ), секреция которого происходит в аденогипофизе. Концентрация кортизола снижается до минимального уровня в вечерние часы и достигает максимальных значений в момент пробуждения. Последнее имеет важное значение, поскольку обусловленные стрессовыми воздействиями изменения концентрации кортизола могут оказаться малозаметными в период максимального повышения кортизола в утренние часы.

Влияние низких температур в состоянии покоя на концентрацию кортизола в плазме неоднозначно, поскольку в различных работах констатировали ее повышение (Suzuki et al., 1967; Wilkerson et al., 1974; Kauppinen et al., 1989; Hennig et al., 1993; Tikuisis et al., 1999) либо отсутствие изменений (Golstein-Glaire et al., 1970; Wilson et al., 1970; Ohno et al., 1987; Wittert et al., 1992; Frank et al., 1997; Marino et al., 1998).

В случае изучения последствий совместного воздействия холода и физической нагрузки наблюдали как увеличение, так и снижение уровня кортизола. К возможным причинам таких противоречий можно отнести продолжительность упражнений и время суток. В одной из таких работ изучали влияние занятий плаванием (Galbo et al., 1979), тогда как в двух других (McMurrey et al., 1994; Castellani et al., 2002) — эффекты занятий на велоэргометре и ходьбы соответственно. Лишь в одном из исследований учитывали изменения объема плазмы и использовали стандартизацию отбора крови, предусматривавшую контроль положения руки и тела (Castellani et al., 2002). Различия в изменениях температуры ядра тела в исследовании Галбо (Galbo et al., 1979) (-0,8 “С) и МакМюррея (McMurrey et al., 1994) (0 °С) могут объяснить, почему уровень кортизола снижался в случае занятий плаванием, но не после занятий на велоэргометре. Вместе с тем Кастеллани (Castellani et al., 2002) также наблюдал снижение температуры ядра тела (0,2—0,5 °С) и обнаружил, что совместное воздействие холода и физической нагрузки ведет к повышению концентрации уровня кортизола. Возможно, длительное воздействие холода (-5 ч) в сочетании со средней интенсивностью физической нагрузки (50 % V02max) приводит к более сильному ответу на стресс по сравнению с высокоинтенсивными тренировочными занятиями небольшой продолжительности (Galbo et al., 1979). Пандольф также не обнаружил изменения уровня кортизола после занятий плаванием в холодной воде в течение 50 мин с интенсивностью 50 % V02max (Pandolf et al., 1992). Следует отметить, что в исследовании Кастеллани повышение уровня кортизола происходило в отсутствие изменений концентрации АКТГ (Castellani et al., 2002), что свидетельствует о независимости от АКТГ секреции кортизола во время продолжительного воздействия низкой температуры и физической нагрузки.

Время суток может быть наиболее важным фактором, определяющим характер изменений концентрации кортизола под влиянием совместного воздействия холода и физической нагрузки. Кастеллани проводил свои исследования в послеобеденное или вечернее время, когда уровень кортизола обычно низкий и обнаружить реакцию на стресс легче, в то время как в других работах исследования проводились в утренние часы, когда его уровень высокий. Кроме того, если физические нагрузки начинались утром и при не очень высокой интенсивности продолжались достаточно долго (Ainslie et al., 2002), снижение концентрации кортизола после холодового воздействия просто отражает естественные суточные колебания концентрации гормона. Корректная интерпретация результатов исследований совместного воздействия низкой температуры и физической нагрузки будет возможна в случае введения в эксперименты необходимых контрольных групп.

Инсулин и глюкагон

Инсулин и глюкагон являются двумя основными гормонами, которые регулируют запасание и расход энергетических субстратов. Инсулин — анаболический гормон, который стимулирует запасание энергетических субстратов в тканях организма, тогда как глюкагон действует в печени, стимулируя выделение глюкозы и β-гидроксибутирата. Поскольку холодовое воздействие средней степени в состоянии покоя повышает окисление глюкозы в плазме на 138 %, гликогена в мышцах — на 109 % и липидов — на 376 % (Haman et al., 2002), складывается впечатление, что эти гормоны играют определенную роль в обеспечении энергетическими субстратами сократительного термогенеза.

Уровень инсулина в плазме не изменяется в результате острого холодового воздействия, при котором температура ядра тела практически не изменяется (Martineau, Jacobs, 1989; Vallerand et al., 1995; Tipton et al., 1997; Haman et al., 2002; Koska et al., 2002), однако после погружения в воду, температура которой 10 “С, вызывающей снижение температуры ядра на 1 °С и увеличение интенсивности метаболических процессов, было обнаружено снижение концентрации инсулина на 32 % (Jacobs et al., 1984). Воздействие холодного воздуха усиливает чувствительность к инсулину или реакцию на инсулин в скелетной мышце. После внутривенного теста толерантности к глюкозе уровень се в крови снижается быстрее в случае более низкой концентрации инсулина в плазме при температуре воздуха 10 °С по сравнению с нормальными условиями (Vallerand et al., 1988).

Сложность интерпретации результатов исследований совместного воздействия низких температур и физической нагрузки обусловлена различиями в планировании исследований, использованных видах двигательной активности и интенсивностях физической нагрузки. В целом складывается впечатление, что при физической нагрузке, в отличие от состояния покоя, снижение уровня инсулина не связано со снижением температуры ядра тела (Galbo et al., 1979) и изменения уровня этого гормона не связаны с активацией p-адренергических рецепторов (Lehtonen et al., 1984). Десять недель занятий плаванием с низкой интенсивностью в холодной воде приводили к снижению уровня инсулина во время занятия (Hermanussen et al., 1995). Неясно, было ли это связано с изменениями температуры тела или повышением уровн

       





Комментарии: (0)


Оставить свой комментарий











© sportguardian.ru Все права защищены!
Почта для связи: [email protected]

Вы успешно добавили товар в корзину!


Продолжить покупки
Перейти в корзину