СПОРТИВНАЯ ЭНЦИКЛОПЕДИЯ


16.11.2019 18:41

Источник:
Эндокриная система, спорт и двигательная активность.
Перевод с англ./под ред. У.Дж. Кремера и А.Д. Рогола. - Э64
Издательство: Олимп. литература, 2008 год.

Гормоны и модуляция обменных процессов в костной ткани в условиях физической нагрузки

Двигательная активность является важным компонентом нормального состояния организма. За последнее десятилетие значительно возросло количество людей, которые начинают заниматься по различным программам двигательной активности с целью улучшения или поддержания своего состояния здоровья. Некоторые из них убеждены в том, что занятия физическими упражнениями на протяжении длительного времени позволят увеличить продолжительность и качество жизни, тогда как другие считают, что физическая подготовленность положительно влияет на психическое состояние и укрепляет мышечную систему. Независимо от физиологического воздействия или логического обоснования долговременные эффекты регулярной двигательной активности в течение продолжительного периода времени как положительные, так и отрицательные являются предметом интенсивных исследований.

Двигательная активность, благодаря природе своих компонентов, оказывает влияние практически на все системы гормональной регуляции, начиная от β-эндорфинов головного мозга до локальных цитокинов и хемокинов в костной ткани. Несмотря на то что большинство людей убеждены в том, что регулярные занятия физическими упражнениями в течение продолжительного времени оказывают положительное воздействие практически на все системы и органы человеческого тела, значительные изменения нормального физиологического состояния таких гормональных регуляторов может оказывать на ткани не только положительное, но и отрицательное влияние. Наиболее показательный пример такой ситуации — аменорея, обусловленная физической нагрузкой, или женская спортивная триада. Эти нарушения проявляются чаще всего у молодых женщин и связаны с тем, что регулярные интенсивные занятия физическими упражнениями приводят к нарушению функции генератора пульса, управляющего периодической секрецией гонадотропина, что влечет за собой снижение секреции эстрогенов. Последнее в свою очередь оказывает заметное влияние на процессы ремоделирования кости так, что резорбция начинает преобладать над формированием костной ткани, результатом чего становится существенное снижение массы костной ткани. Таким образом, эта взаимосвязь между гомеостатическими процессами, имеющими отношение к гормональной передаче сигналов, и механизмами реакции на стресс, причиной которого являются занятия физическими упражнениями, в наибольшей степени проявляется в костной ткани, которая редко рассматривается в качестве мишени для системных модуляторов. Вместе с тем список медиаторов скелетной системы, на которые влияет двигательная активность в течение продолжительного времени, практически бесконечен и включает существенные изменения уровня в крови половых стероидов, стероидов, вырабатываемых надпочечниками, цитокинов, простагландинов, соматотропного гормона (СТГ), лептина и др. Все эти эндогенные соединения оказывают влияние на другие системы, в частности на баланс энергетических субстратов, тренированность сердечно-сосудистой системы и сохранность мышечной системы, чтобы индуцировать изменения, которые могут принести пользу или нанести ущерб организму. Невесомость во время пилотируемого космического полета и сопутствующие эксперименты на животных предоставили первые полученные in vivo доказательства значения гормональных регуляторов для роста скелета ткани, его ремоделирования и сохранения костной массы. Со времени первых дней освоения космоса наше понимание влияния физической тренировки на гормональный баланс и его последующее действие на скелет существенно обогатилось. Вместе с тем остается еще немало неясных вопросов, на которые еще предстоит дать ответ. Сначала коснемся физиологических аспектов процессов ремоделирования костной ткани, поскольку это позволит сформировать основу, необходимую для понимания гомеостаза скелета, важности системы кровообращения, а также локальных факторов роста в регуляции адаптивных процессов в костной ткани. Затем будут охарактеризованы результаты влияния интенсивной двигательной активности на функцию клеток костной ткани с особым акцентом на клеточные аспекты воздействия физической нагрузки в пределах структурной многоклеточной единицы костной ткани.

Физиология нормального и нарушенного процесса ремоделирования костной ткани

Нормальное формирование и перестройка костной ткани

Скелет млекопитающих растет и перестраивается на протяжении всей жизни. Линейный рост происходит в зоне роста (пластинке роста) и регулируется СТГ и ИФР-I. У грызунов линейный рост скелетных костей продолжается в течение всей жизни, хотя наиболее выражен он в период полового созревания. Однако скелет человека, который представляет собой нечто гораздо большее, чем просто кристаллы фосфата кальция, соединенные вместе в белковом матриксе, растет, формируется и затем перестраивается. Линейный рост костей у человека происходит в зоне роста, начинается при рождении и практически прекращается после завершения полового созревания. Его регуляция осуществляется главным образом хондроцитами ростовой пластинки. Формирование кости является результатом процессов резорбции и образования костной ткани, происходящих под влиянием ряда факторов, включая гуморальные вещества, двигательную активность и локальные факторы. Формирование кости также прекращается после полового созревания под влиянием некоторых стимулов, в том числе изменений уровня половых стероидов и ИФР-I в крови. Формирование кости в значительной степени зависит от направленности векторов физической нагрузки, которая определяется характером мышечных сокращений, вследствие чего форма кости в поперечном сечении не идеально овальная, а несколько эксцентричная, в зависимости от направления формирующих ее сил. Перестройка кости представляет собой совершенно иной гомеостатический процесс по сравнению с ростом и формированием, хотя происходит она при участии тех же клеток костной ткани. Перестройка позволяет скелету реорганизовать себя без изменения костной массы и, следовательно, служит для обеспечения целостности скелета, а также поддержания метаболического баланса, особенно в отношении таких важных ионов, как кальций и фосфат (Rosen, 2003). Во время перестройки скорость резорбции или разрушения кости равна скорости образования новой костной ткани.

В отличие от этого рост и формирование новой кости происходит вследствие линейного удлинения в зоне роста за счет деления хондроцитов и роста на боковых поверхностях в области диафиза за счет деления остеобластов надкостницы. Достижение максимальной массы костей скелета возможно только при условии оптимизации всех этих трех различных, но при этом взаимосвязанных процессов. Общеразвивающие физические упражнения влияют на растущий скелет, особенно в период, когда эти три различных процесса характеризуются наибольшей активностью, т. е. в период полового созревания. В период примерно с 10 до 18 лет происходит активный линейный рост и формирование скелета. Большинство исследований, в которых проводилась оценка влияния двигательной активности на рост костей (т. е. нагрузки скелета в той ли иной форме, например при занятиях бегом или тяжелой атлетикой), в этом периоде жизни человека отмечался наиболее выраженный ответ, проявлявшийся в изменении минеральной плотности костной ткани.

Перестройка или ремоделирование костной ткани представляет собой постоянный процесс, который определяет метаболические потребности скелета и обеспечивает его эластичность, необходимую для занятий общей двигательной активностью. Полная замена костной ткани происходит в течение каждых 10 лет, при этом наиболее активно обменные процессы протекают в богатых губчатым веществом участках позвонков грудного и поясничного отделов позвоночника, а также некоторых участках бедренной кости (Rosen, 2003). Учитывая большую функциональную нагрузку, которая приходится на скелет млекопитающих, неудивительно, что он представляет собой высокоорганизованный, физиологически активный орган. Кости выполняют две основные функции: а) поддержание определенной структуры тела; б) депо кальция для обеспечения всех физиологических процессов. Скелет млекопитающих уникальным образом приспособлен для выполнения своей защитной и структурной функции. Внутреннее губчатое (трабекулярное) вещество кости окружает более плотный кортикальный слой. Губчатое вещество содержит костный мозг, питание кортикальной костной ткани осуществляется с помощью кровеносных сосудов надкостницы и множества канальцев, соединяющих остеоциты с выстилающими клетками и остеобластами. Термин “структурная многоклеточная единица” описывает единый функциональный компонент ремоделироваиия костной ткани, который включает выстилающие клетки, остеобласты, остеокласты и остеоциты. Силы гравитации воздействуют на структурную многоклеточную единицу и стимулируют перестройку коркового и губчатого вещества. Что касается роста кости, за продольный рост и утолщение отвечают главным образом остеобласты надкостницы и расположенная под ней пластинка роста. И корковая, и трабекулярная костная ткань подвергается перестройке, однако скорость этого процесса в плотном веществе намного меньше, чем в трабекулярных участках спинных позвонков и дистального отдела бедренной кости.

По данным анализа, проведенного с помощью микрокомпьютерной томографии, кость представляет собой орган, состоящий из двух компонентов: коркового (плотного) вещества и трабекулярной костной ткани (мозгового вещества).

Перестройку костной ткани регулируют многочисленные ростовые факторы и цитокины, каждый из которых вносит свой вклад в сопряжение процессов разрушения (резорбции) и образования костной ткани. Проостеобласты образуются из клеток мезенхимальной стромы и под влиянием ключевого транскрипционного фактора (Cbfal — связывающий кофактор 1 или RUNX2) представляют собой клетки-мишени для инициации цикла перестройки костной ткани (Martin, Ng, 1994; Thissen et al., 1994). Системные и локальные факторы, а также сигнальные вещества, вырабатываемые остеоцитами, стимулируют дифференцировку проостеобластов и это в свою очередь приводит к синтезу и секреции фактора, стимулирующего рост колоний макрофагов (M-CSF), а также лиганда рецептора-активатора ядерного фактора каппа В (RANKL) (Musey et al.,1993). Эти два пептида необходимы и достаточны для активации клеток, осуществляющих резорбцию костной ткани, а именно остеокластов. После начала разрушения костной ткани из костного матрикса высвобождаются кальций, фрагменты коллагена и ростовые факторы, в частности инсулиноподобные факторы роста (ИФР) и трансформирующие факторы роста (TGF). Последние стимулируют активацию остеобластов и их перемещение к поверхности кости, благодаря чему начинается этап синтеза коллагена и формирования/минерализации матрикса (Rosen, Donahue, 1998). Полный цикл перестройки костной ткани у человека занимает примерно 90 дней, при этом основные затраты времени связаны с образованием и последующей минерализацией кости (Rosen, Donahue, 1998). И на каждом этапе временное согласование и направленность перестройки костной ткани в трехмерном пространстве регулируются с помощью системных гормонов, в частности паратгормона, эстрогена, тироксина и СТГ.

Одним из наиболее важных локальных и системных ростовых факторов, участвующих в регуляции процесса ремоделирования кости, является ИФР-1; ИФР-I и ИФР-II представляют собой основные компоненты органического матрикса кости и кровообращения. Сыворотка крови большинства млекопитающих содержит в больших концентрациях ИФР-I и ИФР-П, ассоциированных с высоко- и низкомолекулярными белками, связывающими инсулиноподобный фактор роста (IGFBP) (Ketelslgers et al., 1995). Костный матрикс также обогащен этими ростовыми факторами и другими неколлагеновыми белками, включая все шесть IGFBP и несколько протеаз IGFBP. Кроме того, остеокласты и остеобласты имеют рецепторы ИФР типа I.

В настоящее время установлено, что инсулиноподобные факторы роста в костной ткани происходят из двух источников: а) синтеза de novo клетками, формирующими кость (проостеобласты и терминально дифференцированные остеобласты; б) из системы кровообращения. Некоторые ИФР в костной ткани могут попадать в матрикс по специализированным каналам и синусоидным капиллярам системы микроциркуляции кости (Rosen, Kessenich, 1996; Rosen, Donahue, 1998). Комплексы ИФР с IGFBP обнаруживаются также в окружении костного мозга в тесном контакте с внутренней поверхностью кости. Однако, согласно большинству опубликованных данных, преобладающая основная масса ИФР-I в костной ткаии синтезируется на локальном уровне в остеобластах. Кроме того, во время активного разрушения кости при растворении костного матрикса значительные количества ИФР-I и ИФР-II высвобождаются из связанного состояния (т. е. из комплексов с IGFBP-5 и гидроксиапатитом) (см. рис. 28.2). После этого обе формы ИФР активируют перемещение клеток-предшественников остеобластов и, возможно, незрелых остеокластов к поверхности кости, где происходит процесс перестройки (Rosen, Kessenich, 1996; Rosen, Donahue, 1998; Heaney et al., 1999).

Уровень ИФР-I в крови и костной ткани в значительной степени зависит от особенностей диеты и двигательной активности. Задержка роста « одно из основных проявлений недостаточной энергетической ценности рациона питания у детей, взаимосвязана с существенным снижением уровня ИФР-I в крови, несмотря на повышенный уровень секреции СТГ. Точно так у лиц зрелого возраста при недостатке потребления белковой пищи наблюдается снижение содержания ИФР-I в сыворотке крови (Schurch et al., 1998). Наиболее вероятная причина этого — уменьшение времени жизни мРНК ИФР-I в печени. Однако независимо от механизмов ИФР-I является компонентом завершающего общего пути передачи сигнала, который подвержен влиянию изменений рациона питания и энергетического баланса. Таким образом, этот пептид — важный медиатор ответа скелетной системы на стресс. Эту точку зрения подтверждают результаты проведенного недавно исследования женщин старшего возраста, перенесших перелом костей тазобедренного сустава (т. е. последние стадии остеопороза). После перелома тазобедренного сустава наблюдается выраженное снижение уровня ИФР-I в сыворотке крови, что может быть результатом плохого питания или недостаточного уровня двигательной активности, а также катаболического состояния (Schurch et al.,1998). Уровень ИФР-I может быть частично восстановлен посредством применения рекомбинантного ИФР-I в комплексе с IGFBP-3 (Boonen et al., 2002). Такая методика лечения после перелома тазобедренного сустава у пациентов старшего возраста позволяет снизить утрату костной ткани и добиться значительного повышения функциональных результатов (Boonen et al., 2002). Эти данные подтверждают значение ИФР-I как циркулирующего в системе кровообращения медиатора, который влияет на реакцию скелетной системы на травмы, особенно в связи с состоянием энергетического баланса организма.

У детей и лиц первого зрелого возраста двигательная активность стимулирует секрецию ИФР-1, что может приводить к повышению уровня ИФР-I в сыворотке крови. В более старшем возрасте этот эффект ослабевает и даже выполнение физических упражнений в течение продолжительного времени не вызывает статистически достоверных изменений уровня ИФР-I в сыворотке. В то же время в отношении двигательной активности следует отметить, что все, снижающее потребление с пищей существенных питательных веществ (т. е. продолжительная двигательная активность при ограниченном рационе питания или принудительное голодание) и у детей, и у взрослых будет подавлять стимуляцию секреции ИФР-I в печени под влиянием СТГ и существенно снижать уровень этого фактора роста в крови.

Физические упражнения могут также влиять на экспрессию ИФР-I в костной ткани. В нескольких исследованиях было показано, что перемещение жидкости может стимулировать экспрессию мРНК ИФР-I в остеоцитах и остеобластах (Srinivasan, Gross, 2000). Регулярная общая двигательная активность повышает уровень экспрессии ИФР-I не только в мышечной ткани, но также в надкостнице и, возможно, на внутренней поверхности костей. Эти изменения могут оказывать сильное воздействие па формирование костной ткани, смещая баланс в процессе перестройки в благоприятном направлении, в частности в период достижения максимальной массы кос- тной ткани. Однако недостаточная физическая нагрузка устраняет стимулы к формированию костной ткани, в частности за счет повышения устойчивости клеток кости к действию ИФР-I (Sakata et al., 2003) (см. далее подраздел “Изменения в эндокринной и скелетной системе под влиянием двигательной активности в течение продолжительного времени”).

Цикл перестройки зависит от изменений потребления других питательных веществ, которые могут существенно повлиять на образование факторов роста и цитокинов в остеобластах. Фосфатный баланс имеет важное значение для минерализации, низкий уровень фосфатов вызывает активацию 1а-гидролазы — ключевого фермента превращения 25-гидроксивитамина D в активную форму 1,25-гидроксивитамин D. И наоборот, высокая концентрация фосфатов стимулирует секрецию паратгормона, следствием чего является заметная активация процессов перестройки костей и усиление процессов резорбции. Недостаток кальция в сочетании с дефицитом витамина D подавляет экспрессию ИФР-I в костной ткани, может активировать секрецию паратгормона и с большой долей вероятности является основным фактором вторичного гиперпаратиреоза, который наблюдается у пожилых людей. Кроме того, диета с низким содержанием кальция и низкий уровень витамина D могут вносить свой вклад в ослабление ответа скелетной системы на физическую нагрузку. Витамин К является важным кофактором у-карбоксилирования остеокальцина, наиболее многочисленного белка костей. Остеокальцин вырабатывается высокодифференцированными клетками, формирующими костную ткань, и может иметь важное значение для минерализации. Усиление экспрессии и секреции остеокальцина были обнаружены также при изучении влияния физической нагрузки на скелетную систему. Другие микроэлементы, такие, как бор и стронций, могут влиять на функцию костных клеток in vitro, в то же время их роль в процессе перестройки костей до сих пор не установлена. Аналогичным образом низкий уровень магния может влиять на активность клеток костной ткани in vitro, однако единого мнения в отношении его роли в ремоделировании костей и реакции скелетной системы на физическую нагрузку пока не существует.

Нарушения процесса перестройки костей

Нарушения перестройки кости, которые проявляются в средней степени разобщения цикла обменных процессов в структурной многоклеточной единице, в частности в ускорении резорбции по сравнению с образованием костной ткани, наиболее часто наблюдаются при старении и менопаузе. Женщины на протяжении своей жизни могут терять примерно 42 % костной массы позвоночника и 58 % бедренной кости (Rosen, 2003). Удивительно, что у некоторых женщин скорость потери костной ткани на 8-м и 9-м десятилетиях жизни может быть сопоставимой или превышать аналогичный показатель в менопаузальном или постменопаузальном периоде жизни (Lacey et al., 1998; Robey, Bianco, 1999). Причиной этого является разобщение цикла ремоделирования костной ткани у лиц пожилого возраста, приводящее к заметному усилению резорбции костной ткани при отсутствии изменений или замедлении ее образования (Martin, Ng, 1994; Rosen, Donahue, 1998). Вместе с тем механизмы, которые приводят к разобщению процессов резорбции и образования кости, особенно у пожилых людей, еще предстоит выяснить. Вероятнее всего, сильное влияние на скелетную систему оказывают резкие изменения уровня некоторых гормонов (эстроген, тестостерон, соматотропный гормон) самостоятельно или в сочетании с недостаточным рационом питания. Влияние малоподвижного образа жизни на возрастные изменения в скелетной системе остается неясным, однако, вероятнее всего, оно ускоряет резорбцию костной ткани у пожилых людей.

Последние технологические достижения в сфере разработки экспериментальных методов исследований значительно облегчили наблюдение за процессами перестройки костной ткани путем определения изменений специфических маркеров обменных процессов в костной ткани при патологических состояниях, таких, как остеопороз. Изменения обменных процессов в костной ткани могут быть установлены с помощью ряда биохимических маркеров, включая показатели резорбции кости (т. е. содержание в моче или сыворотке N-телопептида, С-телопептида, а также свободного и суммарного дезоксипиридинолина в моче) и маркеров образования костной ткани (например, остеокальцина, пептида проколлагена, костноспецифической щелочной фосфатазы). В целом уровень маркеров обменных процессов в костной ткани значительно выше у лиц пожилого возраста по сравнению с более молодыми женщинами постменопаузального возраста. Кроме того, их содержание обратно пропорционально минеральной плотности костной ткани (Beamer et al., 2000). Например, в исследовании EPIDOS, проведенном среди пожилых женщин европейских стран, самый высокий уровень остеокальцина, N-телопептида, С-телопептида и костноспецифической щелочной фосфатазы наблюдался у лиц с наименьшей плотностью костной ткани бедренной кости (Thissen et al., 1994). Кроме того, повышенный уровень показателей резорбции костной ткани коррелировал с повышенным риском переломов костей, независимо от показателя минеральной плотности костной ткани (Thissen et al., 1994). По данным исследования EPIDOS, для женщин с низкой плотностью и высокой скоростью резорбции костной ткани вероятность перелома костей тазобедренного сустава была выше приблизительно в 5 раз. В случае изучения индуцированных физическими нагрузками изменений в скелетной системе маркеры обменных процессов в костной ткани позволяют оценить роль системных факторов в модулировании адаптивного ответа на нагрузки, в частности в связи с резорбцией костной ткани.

В отличие от однотипного характера изменений показателей усиленной резорбции костной ткани у лиц пожилого возраста, изменения маркеров ее образования у пациентов с остеопорозом более разнообразны. У некоторых пациентов наблюдается повышенный уровень остеокальцина в сыворотке крови, однако это может быть показателем усиления обменных процессов в костной ткани, а не отражать настоящее усиление образования кости (Thissen et al.,1994). Однако, по данным различных исследований, уровень костноспецифической щелочной фосфатазы и пептида проколлагена у пожилых мужчин и женщин может быть высоким, нормальным и низким (Musey et al., 2003). Показатели гистоморфометрических исследований костной ткани у некоторых пациентов также могут варьировать в значительной степени. Таким образом, хотя и получены убедительные доказательства возрастного усиления резорбции костной ткани, характер возрастных изменений процесса образования кости не столь однозначен. Тем не менее, при старении и после наступления менопаузы основные нарушения функции скелетной системы проявляются в разобщении цикла перестройки костной ткани, которое приводит к ее утрате, изменению строения скелета и возрастанию подверженности переломам костей. Эти факторы имеют особо важное значение при рассмотрении воздействия краткосрочных и продолжительных программ двигательной активности на возрастные изменения скелетной системы.

Установлено, что невесомость в условиях космического полета вызывает наиболее быструю и интенсивную утрату костной ткани по сравнению с любыми другими патологическими состояниями (Neuman, 1971). Этот процесс является следствием ускоренной резорбции кости и одновременного подавления образования костной ткани, которые начинаются сразу после исчезновения силы тяжести. Несмотря на то что гормональное замещение позволяет частично ослабить такие потери, восстановление нормальной костной ткани возможно только в условиях нормальной силы тяжести. Роль низкого уровня двигательной активности в развитии остеопороза, не связанного с невесомостью или постельным режимом, изучена гораздо хуже. В нескольких исследованиях показано, что у здоровых людей постельный режим может быть ассоциирован с разобщением образования и резорбции костной ткани, при котором происходит усиление резорбции и подавление образования (Chappard ct al., 1995). Подобные процессы могут происходить после перелома костей бедренного сустава, когда соблюдение неподвижного состояния играет важную роль и потеря костной массы конечности, расположенной на противоположной от травмированного сустава стороне тела, может быть очень большой даже за относительно небольшой промежуток времени (Sato et al., 2001).

Значительно меньше внимания уделялось изучению роли, которую может играть в нарушениях перестройки поверхность надкостницы, а также прямого влияния на этот участок гормональных и локальных факторов. Проведенное недавно в Швеции проспективное исследование постменопаузальных женщин на протяжении 20 лет показало, что утрата костной ткани, выраженная в виде уменьшения радиуса кости, составляет в среднем около 2 % в год. В то же время у тех же женщин происходило существенное увеличение толщины периоста (рис. 28.4), так что момент инерции поперечного сечения — показатель прочности кости — в действительности возрастает (Ahlborg et al., 2003). Эго свидетельствует о том, что в ходе утраты внутренней части кости в результате старения или гормональной недостаточности периост старается компенсировать это снижение, чтобы сохранить прочность кости (Duan et al., 2001). В настоящий момент неизвестно, каким образом происходит утолщение надкостницы в ответ на утрату внутренней части кости и какие сигналы, стимулируют этот процесс (рис. 28.4) (Beck et al., 2000; Nelson ct al., 2000). Вместе с тем следует отметить, что два наиболее значимых регулятора роста надкостницы — это мышечная активность и системный ИФР-I. Поскольку мышечная активность также может стимулировать образование ИФР-I на локальном уровне в надкостнице и скелетных мышцах, этот пептид может играть критическую роль в компенсаторном ответе скелетной системы при старении (Adams, Haddad, 1996). И действительно, данные исследований на трансгенных и нокаутных мышах показывают, что ИФР-I в крови имеет важное значение для формирования скелета и стимулирует его оптимальный рост, в частности в медиально-латеральном измерении (Biklc et al., 2002). Поскольку периост имеет хорошо развитую сосудистую систему, а перициты могут дифференцироваться в остеобласты, не будет столь радикальным предположить, что гормональная система СТГ— ИФР-I, на которую может оказывать прямое и непрямое воздействие двигательная активность, является определяющим медиатором данного отдела скелетной системы. Дальнейшие исследования, направленные на проверку данной гипотезы, в настоящий момент проходят проверку в нескольких лабораториях. Они позволят создать прочную основу для изучения взаимодействия между двигательной активностью, системными гормональными регуляторами и перестройкой костной ткани.

Острая реакция эндокринной и скелетной систем на физическую нагрузку

Скелет представляет собой крайне динамичную систему, которая реагирует не только на системные гормональные факторы, но и на локальные ростовые факторы, вырабатываемые в ответ на приложенную нагрузку. Как отмечалось выше, построение скелета, т. с. процесс формирования и роста, а также его перестройка, т. е. процесс обновления костной ткани, чувствительны к гормональным медиаторам и локальной механической нагрузке. О реакции скелетной системы на воздействие системных медиаторов известно гораздо больше, чем о ее изменениях под влиянием механических нагрузок. Вместе с тем существуют некоторые биомеханические свойства скелета человека, которые применимы к любой форме нагрузки и синергичны с гормональными факторами, действующими на структурную многоклеточную единицу костной ткани.

Костная ткань проявляет поразительную способность к адаптации к изменениям физической нагрузки, которая обеспечивает оптимальную прочность скелета при поддержании оптимальной массы костей. О том, что это происходит за счет изменения его массы, геометрии, а также внутренней микроархитектуры, известно уже более 100 лет (Boydеn et al.,2002). И только совсем недавно стало известно о факторах, которые регулируют реакцию скелетной системы на физическую нагрузку, включая активирующие гормоны, такие, как паратгормон и СТГ (Turner ct al., 1997). Чтобы было понятно, о чем речь пойдет далее, скажем, что нагрузка, которая воздействует на скелет, называется давлением (т. е. сила на единицу поверхности), тогда как напряжение представляет собой оценку деформации скелета под действием давления (т. с. относительное изменение длины). Именно напряжение стимулирует адаптивный ответ кости под влиянием нагрузки. Адаптация твердых тканей к воздействию внешнего давления происходит за счет изменения соотношения резорбции и образования костной ткани. Адаптивный ответ представляет собой изменения массы костной ткани, геометрии и ориентации трабекул, и все эти процессы регулируются системными факторами.

Не все адаптивные реакции на стресс равноценны, поскольку их характер определяется геометрическими особенностями строения кости, однако существует прямая зависимость между величиной напряжения и соответствующей реакцией скелетной системы (Rubin, Lanyon, 1985). Клеточный механизм, ответственный за такую взаимосвязь, неизвестен, но исследователи утверждают, что должен существовать “механостат”, который регулирует разрастание периоста и разрушение внутренней части кости. Если кость подвергается нагрузке, которая вызывает более 2500 микродеформаций, в обоих этих участках происходит построение костной ткани, что обеспечивает увеличение прочности кости (Rubin, Lanyon, 1985). И наоборот, при уменьшении напряжения построение кости подавляется и происходит перестройка внутренней части кости с ее резорбцией. Гипотетический механостат ни разу не был обнаружен, однако предположений о его локализации и механизме действия имеется предостаточно. В большинстве своем они сходятся в том, что остеоциты, погруженные в кортекс кости и соединенные с покоящимися клетками на ее поверхности, способны реагировать на перемещение жидкости и гравитационные воздействия (Noble, Reeve, 2000). Эти “напряжения” стимулируют высвобождение клеточных факторов, которые перемещаются по каналу к поверхности кости и активируют покоящиеся остеобласты или преостеобласты (Turner, 1999). Такая взаимосвязь обеспечивает рекрутирование клеток стромы костного мозга и начало процесса дифференциации, необходимого для формирования кости. Недавно, благодаря генетическому анализу членов семьи с большой массой скелета, но нормальной формой костей, были получены доказательства того, что обнаруженный ранее сигнальный путь в остеобластах может обладать свойствами, п

       





Комментарии: (0)


Оставить свой комментарий











© sportguardian.ru Все права защищены!
Почта для связи: [email protected]

Вы успешно добавили товар в корзину!


Продолжить покупки
Перейти в корзину