Аминогликозиды

Аминогликозиды

Аминогликозиды (аминогпикозидные аминоциклитолы) это бактерицидные антибиотики, подавляющие синт. белка. Несмотря на большую токсичность по сравнению другими антибиотиками, аминогликозиды по-прежнему применяют в клинике, в основном для лечения инфекций вызванных аэробными грамотрицательными бактериями, а стрептомицин — для лечения туберкулеза и некоторых редких инфекций. В этой статье рассмотрены спектр действия, фармакокинетика и побочные эффекты аминогликозидов, а также применение отдельных препаратов этой группы — гентамицина, тобрамицина, амикацина, нетилмицина, канамицина, стрептомицина и неомицина.

Аминогликозиды состоят из остатков аминосахаров, соединенных гликозидными связями с гексозой (аминоциклитолом). Это полярные соединения, содержащие большое количество положительно заряженных групп, что во многом определяет общие для данной группы препаратов фармакокинетические свойства. Так, все аминогликозиды плохо всасываются при приеме внутрь, с трудом проникают в СМЖ и в норме довольно быстро выводятся почками.

Аминогликозиды применяют преимущественно при инфекциях, вызванных аэробными грамотрицательными бактериями. Механизм действия этих препаратов заключается в нарушении синтеза белка у чувствительных к ним микроорганизмов. В отличие от других ингибиторов синтеза белка, аминогликозиды обладают не бактериостатическим, а бактерицидным действием. В результате мутаций, приводящих к изменению белков — мишеней аминогликозидов (рибосомных белков), микроорганизмы могут приобретать устойчивость к этим препаратам. Однако чаще всего устойчивость к аминогликозидам обусловлена нарушением транспорта препаратов в клетку или синтезом инактивирующих их бактериальных ферментов. Гены, кодирующие эти ферменты, располагаются на плазмидах или транспозонах. Возможна перекрестная устойчивость к нескольким аминогликозидам.

Аминогликозиды — эффективные и широко распространенные антибиотики, но выраженное побочное действие ограничивает их применение. Все аминогликозиды обладают сходными побочными эффектами, в первую очередь нефротоксичностью и ототоксичностью. Последняя проявляется как слуховыми, так и вестибулярными расстройствами и обусловлена поражением волосковых клеток внутреннего уха.

Историческая справка

Стрептомицин был получен в результате тщательно спланированного научного поиска. Открытие пенициллина побудило Ваксмана и его сотрудников к изучению почвенных актиномицетов (1939—1943 гг.). В 1943 г. был выделен штамм Streptomycesgriseus, вырабатывавший мощное антимикробное вещество, названное стрептомицином. Стрептомицин подавлял рост микобактерий туберкулеза, ряда аэробных грамположительных и грамотрицательных бактерий. Менее чем за 2 года были всесторонне изучены антимикробные, химические и фармакологические свойства стрептомицина и доказана его клиническая эффективность (Waksman, 1949). С появлением устойчивых к стрептомицину грамотрицательных палочек и грамположительных кокков (энтерококков) область применения этого препарата стала уже, и сейчас его используют только для лечения туберкулеза, туляремии, чумы и некоторых случаев стрептококкового и энтерококкового эндокардита.

В 1949 г. Ваксман и Лешевалье выделили почвенный микроорганизм Streptomyces fradiae, вырабатывавший группу антимикробных веществ, названную неомицином. Одно из этих веществ, неомицин В, до сих пор назначают местно для лечения поверхностных инфекций кожи или внутрь для подавления кишечной микрофлоры. Парентерально препарат не применяют из-за выраженной нефро- и ототоксичности.

Канамицин — антибиотик, который продуцируют Streptomyces kanamyceticus. Препарат был впервые получен Умэдзавой и его сотрудниками в Японском национальном институте здоровья в 1957 г. Сейчас канамицин почти не используют из-за высокой токсичности и распространения устойчивых микроорганизмов; вместо него назначают более современные аминогликозиды.

Гентамицин и нетилмицин — антибиотики широкого спектра действия, вырабатываемые актиномицетами рода Micromonospora, а не Streptomyces, как другие аминогликозиды. Разное происхождение препаратов отражается и в окончаниях их латинских названий (-micin у гентамицина и нетилмицина и -mуcin у других аминогликозидов). Гентамицин был впервые изучен и описан Вайнштейном и его сотрудниками в 1963 г. Препарат обладает более широким спектром действия, чем канамицин, и до сих пор используется очень часто. Тобрамицин и амикацин были внедрены в клиническую практику в 1970-х гг. Тобрамицин — один из компонентов продуцируемого Streptomyces tenebrarius небрамицинового комплекса (Higgins and Kastner, 1967). По антимикробной активности и побочному действию он близок к гентамицину. Амикацин и нетилмицин представляют собой полусинтетические аминогликозиды: амикацин — производное канамицина (Kawaguchi et al., 1972), а нетилмицин — сизомицина. Арбекацин, изепамицин и сизомицин в США не применяют, поскольку имеется множество других столь же активных, но менее токсичных препаратов, таких, как бета-лактамные антибиотики широкого спектра действия и фторхинолоны.

Химические свойства

Аминогликозиды содержат остатки двух и более аминосахаров, которые соединены гликозидными связями с гексозой (аминоциклитолом), обычно занимающей центральное положение в молекуле препарата (рис. 46.1). Гексоза представлена стрептидином (у стрептомицина) или 2-дезокси-стрептамином (у остальных аминогликозидов). Таким образом, по структуре эти препараты представляют собой аминогликозидные аминоциклитолы, хотя чаще их называют просто аминогликозиды. Существует и аминоциклитол, не содержащий аминосахаров, — спектиномицин (гл. 47).

Амикацин — полусинтетический препарат, получаемый из канамицина А путем ацилирования аминогруппы 2-дезоксист-рептамина в первом положении 2-гидрокси-4-аминомасляной кислотой.

Препараты семейства гентамицина — гентамицины С1, С1а и С2, сизомицин и нетилмицин (1-N-этиловое производное сизо-мицина) содержат другой остаток 3-аминосахара — гарозамин (3-дезокси-С-4-метил-3-метиламино-L-арабиноза). Гентамицины С1, С1а и С2 отличаются друг от друга количеством метальных групп у второго остатка аминосахара (рис. 46.1). Различия в химической структуре, по-видимому, почти не влияют на биологическую активность этих препаратов.

Механизм действия

Аминогликозиды — бактерицидные антибиотики. Их активность зависит от концентрации: чем выше концентрация антибиотика, тем быстрее гибнут бактерии. Другое характерное свойство препаратов этой группы — антибактериальное последействие: они сохраняют бактерицидную активность в течение некоторого времени после того, как сывороточная концентрация препарата становится ниже МПК. Время антибактериального последействия тоже зависит от концентрации. Благодаря таким свойствам аминогликозиды эффективны при назначении 1 раз в сутки. Механизм быстрого бактерицидного действия этих препаратов до конца не ясен, хотя их способность подавлять синтез белка и снижать точность трансляции мРНК изучена достаточно хорошо (Shannon and Phillips, 1982).

Основная мишень аминогликозидов — 308-субъединица рибосом — состоит из 21 белка и одной молекулы 16S рРНК. В связывании стрептомицина с рибосомами участвуют по крайней мере три белка, а возможно, и 16S рРНК. Изменение структуры участков связывания в значительной степени сказывается на действии стрептомицина. Например, в результате мутации, приводящей к замене Лиз42 рибосомного белка Щ на аспарагин, нарушается связывание стрептомицина с рибосомами, и бактерия приобретает устойчивость к препарату. Если же лизин в этом положении заменить на глутамин, стрептомицин становится необходимым для жизнедеятельности бактериальной клетки. Другие аминогликозиды связываются не только с 30S-, но и с 508-субъединицей рибосом, на которой имеется несколько участков связывания этих препаратов (Davis, 1988).

Аминогликозиды нарушают инициацию синтеза белка, что ведет к накоплению аномальных инициирующих комплексов, так называемых моносом —- рис. 46.2, A (Luzzatto et al., 1969). Кроме того, аминогликозиды нарушают считывание мРНК, вызывая замены аминокислот в растущей полипептидной цепи (Tai et al., 1978). У разных аминогликозидов это свойство выражено в разной степени, что, вероятно, обусловлено различиями в их сродстве к рибосомным белкам. Показано, что бактерицидная активность препарата в значительной степени зависит от его способности нарушать считывание мРНК (Hummel and Bock, 1989), но вклад этого механизма в бактерицидное действие аминогликозидов окончательно не установлен.

Устойчивость

Устойчивость микроорганизмов к аминогликозидам бывает обусловлена уменьшением поступления антибиотика в клетку, низким сродством препарата к рибосомам и инактивацией препарата бактериальными ферментами. В основе приобретенной устойчивости чаще всего лежит последний механизм.

Рисунок 46.2. Влияние аминогликозидов на синтез белка. А. Антибиотик (обозначен черным кружком) связывается с ЗОS-субъединицей рибосомы и нарушает инициацию синтеза белка, фиксируя комплекс, состоящий из 30S- и 508-субъединиц, на инициирующем кодоне (AUG) мРНК. В результате накапливаются аномальные инициирующие комплексы (так называемые моносомы), и дальнейшая трансляция прекращается. Б. Связываясь с ЗО-S-субъединицей рибосом, аминогликозиды нарушают также считывание мРНК, что приводит к преждевременному окончанию трансляции и отсоединению рибосомного комплекса от белка, синтез которого не завершен. В. Кроме того, аминогликозиды вызывают одиночные аминокислотные замены (обозначены крестиком) в растущей полипептидной цепи, в результате чего синтезируются дефектные белки.

Устойчивость, обусловленная замедленным проникновением аминогликозидов в периплазматическое пространство грамотрицательных бактерий через поры наружной мембраны, встречается редко. Более распространенный механизм — инактивация препарата в пе-риплазматическом пространстве бактериальными ферментами путем фосфорилирования, аденилирования либо ацетилирования гидроксильных групп или аминогрупп (рис. 46.1). Измененный антибиотик конкурирует с неизмененным препаратом за транспорт внутрь клетки, но не связывается с рибосомами и не влияет на синтез белка. Инактивирующие ферменты (всего их более 20) кодируются плазмидными генами, которые передаются в основном в ходе конъюгации (Davies, 1994; см. также гл. 43). Широкое распространение устойчивости, переносимой плазмидами, особенно среди больничных штаммов микроорганизмов, существенно ограничило применение аминогликозидов. Амикацин более устойчив к действию бактериальных ферментов благодаря боковым радикалам (рис. 46.1), поэтому он играет важную роль в лечении некоторых больничных инфекций.

Серьезной проблемой стало распространение устойчивости, обусловленной инактивацией аминогликозидов бактериальными ферментами, среди энтерококков. В нескольких клиниках значительная доля выделенных от больных штаммов Enterococcus faecalis и Enterococcus faecium высокоустойчивы ко всем препаратам этой группы (Spera and Farber, 1992; Vemuri and Zervos, 1993). Небольшая доля устойчивых к гентамицину штаммов энтерококков чувствительны к стрептомицину, поскольку гентамицин и стрептомицин инактивируются разными ферментами. Штаммы, устойчивые к гентамицину, устойчивы и к тобрамицину, амикацину, канамицину и нетилмицину, так как все эти препараты инактивируются одним и тем же бифункциональным ферментом (Murray, 1991). В отношении устойчивых к аминогликозидам штаммов энтерококков комбинация пенициллинов или ванкомицина с аминогликозидами не оказывает синергичного бактерицидного действия. Кроме того, энтерококки приобрели плазмиды, несущие гены β-лактамаз (Murray and Mederski-Samaroj, 1983), а также плазмиды, кодирующие устойчивость к ванкомицину (Leclercq et al., 1988). Все это сильно затруднило лечение тяжелых энтерококковых инфекций. В США в отделениях реанимации распространились инфекции, которые вызваны штаммами Enterococcus faecium, устойчивыми почти ко всем известным на сегодняшний день антибактериальным средствам.

Природная устойчивость к аминогликозидам может быть обусловлена нарушением их транспорта через цитоплазматическую мембрану. Как уже упоминалось, транспорт аминогликозидов через цитоплазматическую мембрану — это активный процесс, для которого необходим кислород, поэтому облигатные анаэробы, а также факультативные анаэробы, выращенные в анаэробных условиях (Mates et al., 1983), устойчивы к этим препаратам. Сходными причинами, вероятно, объясняется природная устойчивость Stenotrophomonas maltophilia и некоторых других микроорганизмов к амикацину, а также умеренная устойчивость к аминогликозидам некоторых грамположительных кокков. Играет ли роль нарушение транспорта аминогликозидов через цитоплазматическую мембрану в развитии устойчивости у аэробных грамотрицательных бактерий, точно не установлено.

Устойчивость к аминогликозидам, обусловленная изменением строения рибосом, встречается относительно редко; исключение составляет стрептомицин. Так, в результате точечной мутации, приводящей к замене аминокислоты в одном из рибосомных белков Escherichia coli, нарушается связывание стрептомицина с рибосомами. Такие штаммы Escherichia coli высокоустойчивы к стрептомицину, но в природе не распространены. Модификация рибосом лежит в основе устойчивости к стрептомицину у 5% штаммов Pseudomonas aeruginosa, а также у половины устойчивых к этому препарату штаммов энтерококков (Eliopoulos etal., 1984). На такие штаммы энтерококков комбинация пенициллинов со стрептомицином не оказывает синергичного действия in vitro. Однако эти микроорганизмы обычно чувствительны к комбинации пенициллина с гентамицином in vitro, поскольку для гентамицина подобный механизм устойчивости не характерен.

Антибактериальная активность

Гентамицин, тобрамицин канамицин, нетилмицин и амикацин активны в первую очередь в отношении аэробных грамотрицательных палочек. Спектр действия канамицина, как и стрептомицина, уже, чем у других аминогликозидов. В частности, канамицин не следует назначать при инфекциях, вызванных Serratia spp. и Pseudomonas aeruginosa. Как отмечалось выше, аминогликозиды почти не действуют на облигатных анаэробов и выращенных в анаэробных условиях факультативных анаэробов. Кроме того, препараты этой группы недостаточно активны в отношении большинства грамположительных бактерий. Streptococcus pneumoniae и Streptococcus pyogenes настолько устойчивы к аминогликозидам, что гентамицин используют для выявления этих микроорганизмов в мокроте и отделяемом из носоглотки, добавляя препарат в кровяной агар. В сочетании с ингибиторами синтеза клеточной стенки (пенициллинами, ванкомицином) стрептомицин и гентамицин оказывают синергичное бактерицидное действие на чувствительные штаммы энтерококков и стрептококков. Гентамицин и тобрамицин in vitro активны в отношении более чем 90% штаммов Staphylococcus aureus и 75% штаммов Staphylococcus epidermidis. При тяжелых стафилококковых инфекциях монотерапию аминогликозидами не назначают, так как ее клиническая эффективность не доказана. Во время лечения гентамицином быстро появляются мутантные штаммы стафилококков, устойчивые к препарату. Метициллиноустойчивые стафилококки часто устойчивы и к аминогликозидам благодаря генам инактивирующих эти препараты ферментов, расположенным на трансмиссивных плазмидах.

Аэробные грамотрицательные палочки различаются по чувствительности к аминогликозидам (табл. 46.1). Возбудитель считается чувствительным, если в концентрации, создаваемой в сыворотке, антибиотик подавляет его рост, не вызывая выраженных побочных эффектов. При введении каждые 8—12 ч максимальная сывороточная концентрация гентамицина, тобрамицина и нетилмици-на составляет 4—12 мкг/мл, а амикацина и канамицина — 20—35 мкг/мл. Тобрамицин и гентамицин одинаково эффективны против большинства грамотрицательных палочек, но первый обычно более активен в отношении Pseudomonas aeruginosa и некоторых штаммов Proteus spp. Многие грамотрицательные палочки, которые устойчивы к гентамицину благодаря инактивирующи
препарат ферментам, инактивируют и тобрамицин. В последние 20—30 лет число больничных штаммов, устойчивых к гентамицину и тобрамицину, неуклонно растет, причем доля устойчивых штаммов может сильно различаться даже в разных отделениях одной больницы (Cross et al., 1983). К счастью, такие штаммы сохраняют чувствительность к амикацину, а иногда и к нетилмицину, вероятно, благодаря тому, что эти препараты в меньшей степени подвержены действию бактериальных ферментов. Поэтому амикацин и нетилмицин в первую очередь показаны при больничных инфекциях.

Фармакокинетика

Всасывание

Будучи полярными соединениями, содержащими большое число положительно заряженных групп, аминогликозиды очень плохо всасываются в ЖКТ. При приеме внутрь и ректальном введении в системный кровоток поступает менее 1% дозы. Аминогликозиды не разрушаются в кишечнике и выводятся с калом в неизмененном виде. Однако у больных с почечной недостаточностью длительный прием внутрь или ректальное введение могут привести к накоплению аминогликозидов до токсической концентрации. При поражении ЖКТ (язвы, воспалительные заболевания кишечника; Breen et al., 1972) всасывание гентамицина усиливается. Аминогликозиды быстро всасываются при введении в серозные полости и при этом могут вызывать побочные эффекты (например, блокаду нервно-мышечного проведения). Токсическое действие возможно и при длительном местном лечении этими препаратами обширных ран, ожогов, кожных язв, особенно на фоне почечной недостаточности.

Все аминогликозиды быстро всасываются при в/м введении; максимальная сывороточная концентрация достигается через 30—90 мин. Такая же концентрация наблюдается через 30 мин после окончания получасовой в/в инфузии препарата в той же дозе. У тяжелых больных, особенно при шоке, всасывание после в/м инъекции может замедляться из-за плохого кровоснабжения тканей.

Таблица 46.1. Минимальные концентрации аминогликозидов, при которых подавляется рост 90% штаммов микроорганизмов (МПКэд)

Микроорганизм

МПКэд, мкг/мл

Канамицин

Гентамицин

Нетилмицин

Тобрамицин

Амикацин

Citrobacter freundii

8

0,5

0,25

0,5

1

Enterobacter spp.

4

0,5

0,25

0,5

1

Escherichia coli

16

0,5

0,25

0,5

1

Klebsiella pneumoniae

32

0,5

0,25

1

1

Proteus mirabilis

8

4

4

0,5

2

Providencia stuartii

128

8

16

4

2

Pseudomonas aeruginosa

> 128

8

32

4

2

Serratia spp.

>64

4

16

16

8

Enterococcus faecalis

32

2

32

64

Staphylococcus aureus

2

0,5

0,25

0,25

16

Распределение

Вследствие своей полярности аминогликозиды не проникают внутрь большинства клеток, а также в ЦНС и ткани глаза. Все препараты этой группы, за исключением стрептомицина, почти не связываются с альбумином плазмы. Объем распределения аминогликозидов близок к объему внеклеточной жидкости и составляет 25% безжировой массы тела (Barza et al., 1975).

Концентрации аминогликозидов в тканях и биологических жидкостях низкие. В высоких концентрациях эти препараты накапливаются только в корковом веществе почек, эндолимфе и перилимфе внутреннего уха, чем и объясняется их нефро- и ототоксичность. Хотя с желчью выводится лишь незначительное количество аминогликозидов, благодаря активной секреции их концентрация там составляет около 30% сывороточной.

В секретах дыхательных путей концентрация аминогликозидов невелика (Levy, 1986). В плевральную и синовиальную жидкости эти препараты поступают медленно, но при повторном введении могут достигнуть там почти такой же концентрации, как в сыворотке. При перитоните и перикардите облегчается проникновение препаратов в полости брюшины и перикарда.

После парентерального введения концентрация аминогликозидов в СМЖ не достигает терапевтического уровня и, по данным исследований на животных и человеке, в отсутствие воспаления мозговых оболочек составляет менее 10% сывороточной концентрации, а при менингите — до 25% (Strausbaugh et al., 1977). Для лечения менингита, вызванного грамотрицательными палочками, таких концентраций недостаточно, поэтому препараты вводят интратекально и в желудочки головного мозга. С появлением цефалоспоринов третьего поколения необходимость в применении аминогликозидов в большинстве случаев отпала. У новорожденных с менингитом интратекальное или внутрижелудочковое введение аминогликозидов не имеет преимуществ перед в/в введением из-за незрелости гематоэнцефалического барьера (McCracken et al., 1980). Аминогликозиды очень плохо проникают в водянистую влагу и стекловидное тело, поэтому при бактериальном эндофтальмите требуются местные инъекции — субконъюнкгивальные, ретробуль-барные, в стекловидное тело (Barza, 1978).

Назначение аминогликозидов на поздних сроках беременности может привести к накоплению препаратов в крови плода и околоплодных водах. У детей, чьи матери во время беременности получали стрептомицин или тобрамицин, возможно снижение слуха (Warkany, 1979). Данных о применении остальных аминогликозидов во время беременности недостаточно, поэтому беременным эти препараты назначают с осторожностью и только по строгим показаниям, если нельзя использовать антибиотики другой группы.

Дозы

Рекомендуемые при тех или иных инфекциях дозы отдельных аминогликозидов приведены в следующих разделах главы. Суточную дозу обычно разделяют на 2—3 введения. Однако выяснилось, что введение антибиотиков 1 раз в сутки столь же эффективно и реже вызывает побочные эффекты (Veipooten et al., 1989; Gilbert, 1991; Prins etal., 1993; The International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer, 1993; Chamas et al., 1997; Urban and Craig, 1997; Gilbert et al., 1998; Rybak et al., 1999). Побочное действие аминогликозидов обусловлено их накоплением во внутреннем ухе и в почках, чему способствует высокая сывороточная концентрация антибиотика и длительное лечение. Элиминация из этих органов происходит медленнее, чем из крови, а при высокой сывороточной концентрации препарата еще более замедляется (Tran Ва Huy et al., 1983). Поэтому токсичность аминогликозидов зависит от их минимальной сывороточной концентрации (Swan, 1997). Чем дольше сывороточная концентрация превышает относительно безопасный порог (рекомендованную минимальную сывороточную концентрацию), тем выше вероятность токсического действия. При введении 1 раз в сутки максимальная концентрация препарата выше, зато время, в течение которого сывороточная концентрация находится ниже порога токсического действия, больше, чем при введении 3 раза в сутки (соответственно 12 и 3 ч, рис. 46.3). Следовательно, в первом случае вероятность токсического действия меньше. С другой стороны, бактерицидная активность и антибактериальное последействие аминогликозидов зависят от их концентрации. При введении всей суточной дозы за один раз время, в течение которого сывороточная концентрация антибиотика ниже МПК, удлиняется, зато достигается более высокая сывороточная концентрация препарата. Этим, вероятно, и объясняется равная эффективность обоих режимов лечения.

Многочисленные исследования, проведенные в самых разных клинических условиях, показали, что почти все аминогликозиды при введении 1 раз в сутки не менее (а иногда и более) безопасны и столь же эффективны, как и при введении несколько раз в сутки (Barza et al., 1996; Deaney and Tate, 1996; Ferri-ols-Lisart and Alos-Alminana, 1996; Freeman and Strayer, 1996; Ali and Goetz, 1997; Bailey etal., 1997; Chamas etal., 1997; Freeman et al., 1997; Deamer, 1998). К тому же введение всей суточной дозы за один раз дешевле и удобнее. Поэтому такой способ, как правило, предпочтительнее. Исключение составляют беременность, период новорожденности, а также комбинированная терапия инфекционного эндокардита, при которой аминогликозиды назначают в низких дозах. В этих случаях равные эффективность и безопасность указанных режимов лечения не доказаны. При СКФ менее 20—25 мл/мин аминогликозиды назначают еще реже, например каждые 48 ч, во избежание накопления препарата.

Видео по теме

.
Редактор: профессор А.Г. Гилман Изд.: Практика, 2006 год.

Что предлагают интернет магазины?
SPORTGUARDIAN.RU
Logo