Белки, связывающие соматотропный гормон

Белки, связывающие соматотропный гормон

Белки, связывающие соматотропный гормон (growth hormone binding proteins, GHBP), — растворимые белки, которые формируют комплексы с гормоном роста (СТГ) в кровеносной системе. Они представляют собой интегральную часть системы регуляции функции и транспорта соматотропного гормона в крови.

История

Первые сообщения о существовании в крови белков, связывающих соматотропный гормон, появились в 1960-х годах (Irie, Barctt, 1962; Touber, Maingay, 1963; Collip et al., 1964; Hadden, Prout, 1964), но в то время этим данным, как правило, еще не придавалось физиологического значения (Bcrson, Yalow, 1966а, 1966b). В 1977 г. был описан фактор, связывающий СТГ, в сыворотке беременной мыши (Peeters, Friesen, 1977). На это сообщение также не обратили особого внимания. Так продолжалось до момента, когда Бауманн и Херингтон независимо описали, охарактеризовали и частично очистили GHBP из сыворотки человека и кролика (Ymer, Herrington, 1985; Baumann et al., 1986; Hcrington et al., 1986b). Начиная с этого времени, белки, связывающие соматотропный гормон, начали рассматривать как реально существующее явление. Были описаны два СТГ-связывающих белка, один с высоким сродством к гормону, другой — с низким (Baumann et al., 1986). Поскольку с высокоаффииным GHBP работать оказалось довольно просто, он уже вскоре был идентифицирован как эктокомпонент рецептора СТГ (Leung D.W. et al., 1987; Baumann et al., 1988), а для характеристики низкоаффинного СТГ-связывающего белка понадобилось несколько лет исследований (Baumann et al., 1990; Tar et al., 1990), результатом которых стала его идентификация как трансформированного альфа2-макроглобулима (Kratzsch ct al., 1995b). В общем термин СТГ-связывающий белок или GHBP используют для обозначения белков, обладающих высоким сродством (высокоаффинных) к СТГ, и мы в этой главе также будем придерживаться этого правила, если только это не будет оговорено специально.

Природа и химические свойства

Высокоаффинный GHBP представляет собой внеклеточный компонент рецептора СТГ (Leung D.W. et al., 1987; Spencer ct al., 1988). Это гликопротеид, который состоит из одной пептидной цепи, молекулярная масса которого варьирует в широких пределах у разных видов от 28 кДа у кур до 65 кДа у человека. Такие колебания молекулярной массы в значительной степени обусловлены различным характером гликозилирования. Молекулярная масса пептидного остова составляет примерно 28—30 кДа с незначительными отклонениями от этого значения у разных видов животных. Белок, связывающий СТГ, характеризуется значительной эволюционной консервативностью, начиная от рыб и заканчивая человеком, он обнаружен в крови у всех исследованных видов позвоночных. У одних видов он образуется в результате протеолиза рецептора СТГ, у других (грызуны) — синтезируется как самостоятельный белковый продукт (см. далее). Точная структура СТГ -связывающего белка известна лишь для отдельных видов животных, во многих случаях неизвестна структура С-концевого участка. Были обнаружены два субкомпонента, каждый из которых имеет в своем составе р-складчатые листы; субкомпонент 1 на N-конце содержит сайт связывания СТГ, а С-концевой субкомпонент 2 отвечает за димеризацию рецепторов СТГ. Субкомпонент 2 и трансмембранную спираль рецептора СТГ соединяет линейный участок белка, состоящий примерно из 10 аминокислотных остатков (Baumann, Frank, 2002). Точное расположение места расщепления, которое приводит к образованию СТГ-связывающего белка, недавно было картировано на последовательности рецептора соматотропного гормона кролика: расщепление происходит во внеклеточной части белка в области аминокислотного стержня, соединяющего субкомпонент 2 и трансмембранный компонент, так что 238-й аминокислотный остаток становится С-концом GHBP, т. е. расщепление происходит на расстоянии 8 аминокислотных остатков от внешней стороны клеточной мембраны (Wang et al., 2002). На основании сходства последовательности рецептора СТГ кролика на человека в участке, соединяющем внеклеточный компонент с трансмембранным участком белка, можно предполагать, что GHBP имеет аналогичную длину, однако это предположение еще не получило прямых экспериментальных доказательств. У грызунов GHBP представляет собой продукт альтернативного образования мРНК рецептора СТГ, синтез которого происходит de novo. Он содержит на карбоксильном конце “хвост” из 27 и 17 аминокислотных остатков соответственно у мыши и крысы, гомологичный трансмембранному компоненту рецептора (Baumbach et al., 1989; Smith et al., 1989). Последовательность СТГ-связывающего белка мыши содержит соответственно 273 и крысы — 255 аминокислотных остатков. Степень гликозилирования СТГ-связывающего белка варьирует у различных видов, однако сведения в отношении остатков сахаров в составе GHBP крайне ограничены. Белок, связывающий СТГ сыворотки мыши, подвергается гликозидированию по трем аспарагиновым остаткам, тогда как тканевые GHBP (см. далее) содержат меньше углеводов в своем составе и гликозилированы всего по двум аспарагиновым остаткам (Cerio et al., 2002). У крысы СТГ-связывающий белок сыворотки крови содержит сиаловую кислоту, а тканевые GHBP—остатки маннозы (Frick et al., 1998). О подробном строении боковых углеводных цепей не известно ничего. У человека существуют два высокоаффинных СТГ-связывающих белка, которые отличаются наличием в их составе последовательности, кодируемой экзоном 3 гена GHR (Kratzsch et al., 1997b). Эти различия обусловлены полиморфизмом гена GHR в области экзона 3 (Pantel et al., 2000; Seidel et al., 2003). Наличие в составе рецептора СТГ или СТГ-связывающего белка последовательности, кодируемой экзоном 3, не имеет существенного функционального значения для связывания с соматотропный гормоном. В то же время сообщалось о небольших отличиях в корреляциях между содержанием двух изоформ СТГ-связы-вающего белка в сыворотке крови и антропометрическими и/или метаболическими параметрами (Seidel et al., 2003).

Высокоаффинный СТГ-связывающий белок соединяется с константой диссоциации в диапазоне 10-8—10~9 моль (Ymer, Herington, 1985; Baumann et al., 1986b; Smith et al., 1988; Massa et al., 1990). В отношении изоформы соматотропного гормона с молекулярной массой 20 кДа СТГ-связывающий белок обладает несколько меньшим сродством — К, 10″6— 10~7 (Baumann et al., 1986). Как и рецептор СТГ, СТГ-связывающий белок обладает способностью формировать тройные комплексы с СТГ (2 GHBP 1 СТГ), однако вследствие низкой концентрации белка в биологических жидкостях в физиологических условиях преобладают комплексы 1 : 1 GHBP-СТГ (Baumann et al., 1994). Скорость ассоциации СТГ с GHBP человека достаточно высока — примерно 2 х 107 моль~’мин-1 при 37 ”С, максимальное связывание 80 % гормона происходит в течение 5 мин, скорость диссоциации составляет 3,7 х 10-2 мин»1 при 37 °С, время диссоциации половины комплексов | 20 мин (Baumann et al., 1986; Veldhuis et al., 1993; Baumann, 1995).

Низкоаффинный СТГ-связывающий белок является компонентом плазмы, который соединяет Кd в микромолярном диапазоне (Baumann ct al., 1986, 1990; Massa et al., 1990; Tar ct al., 1990; Leung K.C. et al., 2000). Этот белок обладает значительными связывающими способностями и у человека представляет собой модифицированную форму α2-макроглобулина (“трансформированный α2-макроглобулин») (Kratzsch et al., 1995b). О молекулярной природе низкоаффинных СТГ-связывающих белков животных практически ничего не известно.

Механизмы и места образования СТГ-связывающих белков

Как отмечалось выше, высокоаффинный СТГ-связывающий белок в зависимости от вила животного может образовываться с участием различных механизмов. У человека, кролика и некоторых других видов образование GHBP происходит путем протеолитического расщепления, граничащего с мембраной участка внешнеклеточного компонента рецептора СТГ, в английском языке этот процесс получил название “shedding”, буквально — сбрасывание. Недавно был идентифицирован гормон, осуществляющий расщепление рецептора СТГ. Это цинковая металлопротеиназа из семейства ADAM, которая получила название ТАСЕ (tumor necrosis factor converting enzyme — фермент, конвертирующий фактор а некроза опухолей). Она также известна как ADAM-17 (Black et al., 1997; Chang et al., 2000). Зрелый, каталитически активный фермент ТАСЕ — это расположенный в клеточной мембране белок, который взаимодействует с рецептором СТГ и расщепляет его, в результате чего клетка “сбрасывает внешнюю часть рецептора, внутренняя часть которого также вовлекается в определенные внутриклеточные процессы. ТАСЕ отвечает за расщепление ряда трансмембранных белков, приводящее к утрате ими растворимых внеклеточных компонентов, подобно тому как это происходит в случае рецептора СТГ. Вполне возможно, что другие ферменты из этого семейства также вносят свои вклад в расщепление СТГ, однако прямых данных, которые бы подтверждали это предположение, пока не существует. Конформацнонныс изменения, происходящие с рецептором СТГ после связывания с соматотропным гормоном (димеризацня или изменения в предварительно димеризованном рецепторе СТГ), делает его менее подверженным протеолизу по сравнении} с мономерным, не связанным с гормоном рецептором СТГ (Zhang et al., 2001). На основании данных о локализации ТАСЕ и того, что рецепторы СТГ, которые на протяжении долгого времени находятся на мембране (утратившие цитоплазматический компонент), являются наиболее вероятным источником для GHBP, считают, что “сбрасывание” GHBP происходит главным образом, если не исключительно, на поверхности клетки (DAstol ct al., 1996).

Образование СТГ-связывающих белков у грызунов происходит с использованием совершенно иного механизма. У крыс и мышей гены ghr содержат специальный экзон (экзон 8А), кодирующий гидрофильный участок GHBP (см. выше), расположенный между экзонами 7 и 8 (Edens et al., 1994; Zhou et al., 1994, 1996). Экзон 8 кодирует трансмембранную спираль. Альтернативный синтез мРНК, при котором эк* зон 7 может соединяться с экзонами 8А или 8, приводит к образованию РНК, кодирующей СТГ -связывающий белок или рецептор СТГ соответственно (рис. 8.3). Оба продукта транскрипции экспрессируются в одних и тех же тканях, однако неизвестно, как именно осуществляется регуляция их относительной экспрессии. Следует отметить, что рецептор СТГ мыши может подвергаться протеолизу ТАСЕ, но крайней мере, при индукции клеток форболовым эфиром. Однако расщепление рецептора СТГ мыши происходит почти па два порядка менее эффективно но сравнению с расщеплением аналогичного белка кролика (G.Baumann, неопубликованные данные). Представляется, что in vivo большая часть, если не весь СТГ-связывающий белок, циркулирующий в системе кровообращения , образуется в результате альтернативного синтеза мРНК (Saleghi et al., 1990). Два различных механизма образования СТГ-связывающих белков схематически показаны на рис.

У макак-резус образование СТГ-связывающего белка происходит как путем протеолиза, так и с помощью альтернативного синтеза (Martini et al., 1997). В этом случае альтернативная мРНК, кодирующая GHBP, образуется в результате считывания части иптрона 7. В итоге трансмембранный компонент замещается “хвостом” из 7 аминокислотных остатков, после триплетов которых в интроне 7 расположен стоп-кодон. Какой механизм у макак отвечает за считывание альтернативной мРНК, кодирующей СТГ-связывающий белок, неизвестно.

Тканевая специфичность продукции СТГ-связывающего белка особенно хорошо изучена на грызунах; у которых GHBP легко распознать и отличить от рецептора СТГ как на уровне мРНК, так и на уровне белка, по характерной последовательности, расположенной на карбоксильном конце. Образование GHBP происходит во всех тканях, обычно белок коэкспрес-сируется с рецептором СТГ (Carlson В. et al., 1990; Lobie et al., 1992). Однако регуляция их образования не всегда происходит однотипно (Walker et al., 1992). Интересно, что значительная часть GHBP у грызунов остается связанной с клеточной (а также внутриклеточными) мембраной. Природа этой связи пока неизвестна (Frick et al., 1994, 1998). Предполагается, что последовательность Arg-Gly-Asp СТГ-связывающего белка может образовывать связь с мембраной путем взаимодействия с мембранными интегринами (Cerio et al., 2002). GHBP, который циркулирует в системе кровообращения, отличается по гликозилирующим остаткам от ассоциированной с тканями формы. Связанные с мембранами формы GHBP описаны только для грызунов. В каких тканях происходит образование СТГ-связывающих белков у видов, которые используют для этого, протеолитическое расщепление рецептора СТГ менее понятно, поскольку здесь гораздо труднее дифференцировать рецептор СТГ и СТГ-связывающий белок. Поскольку рецептор СТГ и ТАСЕ экспрессируются практически всеми клетками организма, все ткани могут теоретически рассматриваться как источник GHBP. В то же время количественные аспекты выработки СТГ-связывающих белков отдельными тканями четко не определены. На основании относительно высокой представленности рецепторов СТГ в печени принято считать, что именно этот орган является основным источником GHBP. При этом следует иметь в виду, что это мнение не имеет под собой прямых экспериментальных доказательств. Исследование градиентов СТГ-связывающего белка в венозной крови, оттекающей от различных внутренних органов, не обнаружило какого-то одного основного места выработки СТГ-связывающего белка (Segel et al., подано в печать). Вероятнее всего, что многие ткани вносят свой вклад в продукцию СТГ-связывающего белка, циркулирующего в кровеносной системе, однако относительный вклад каждой из них еще предстоит определить.

СТТ-связывающие белки в биологических жидкостях

Высокоаффинный СТГ-связывающий белок обнаруживается в крови и большинстве других биологических жидкостей, таких, как моча, лимфа, молоко, сперма, фолликулярная и амниотическая жидкость (Hattori et al., 1990; Postel-Vinay et al., 1991a; Amit ct al., 1993; Maheshwari et al., 1995; Harada et al., 1997). В спинномозговой жидкости GHBP обнаружено не было (Nixon, Jordan, 1986). В отличие от молока кролика GHBP, выделенный из молока человека, похоже в большей степени имеет отношение к рецептору пролактина, а не соматотропного гормона (Mercado, Baumann, 1994). Содержание GHBP в крови может варьировать в 10-кратном диапазоне и обычно составляет наномолярные или субнаномолярные концентрации. Такой уровень наряду с высоким сродством к СТГ позволяет СТГ-связывающему белку выступать в роли буфера и динамического модулятора, циркулирующего в кровеносной системе соматотропного гормона. При физиологических условиях в состоянии покоя около 45 % СТГ, циркулирующего в системе кровообращения, находится в связанном состоянии с высокоаффиппым GHBP (Baumann et al., 1988, 1990). Это значение динамически изменяется после секреторного выброса СТГ (Veldhuis et al., 1993).

Белок, связывающий СТГ, выявляется также в клетках (Herrington et al., 1986а; Lobie ct al., 1991; Frick et al., 1994), однако источники, предназначение и функция внутриклеточного GHBP неясны.

Низкоаффинный СТГ-связывающий белок обнаружен только в крови, где он содержится в микромолярных концентрациях (Baumann ct al., 1990; Leung К.С. et al., 2000). У человека в составе комплекса СТГ — низкоаффинный СТГ-связывающий белок находится примерно 8 % СТГ, циркулирующего в системе кровообращения. Подсчитано, что у крысы около 20 % СТГ связано с низкоаффинным GHBP (Barsano, Baumann, 1989; Baumann et al., 1989a; Leung K.C. et al., 2000).

Функциональные аспекты

Основная установленная функция СТГ-связывающих белков — образование комплекса с СТГ. Количественно эта функция имеет большее значение для высокоаффинного GHBP, чем для низкоаффинного белка. Непрямой “функцией” образования СТГ-связывающего белка является инактивация рецепторов СТГ за счет расщепления и удаления их эктокомпонента, этот процесс можно рассматривать как «обезглавливание» рецептора. Связывание с СТГ может иметь различные последствия. На локальном (клеточном/тканевом) уровне GHBP конкурирует за лиганд с рецептором СТГ, что приводит к ослаблению действия соматотропного гормона (рис. 8.5). Этот эффект легко продемонстрировать in vitro, когда GHBP ингибирует связывание СТГ с рецепторами и подавляет эффект гормона дозозависимым образом (Lim et al., 1990
Mannorctal., 1991). Еще одной возможной причиной снижения воздействия СТГ является формирование непродуктивных, не дающих сигналов димеров рецептора СТГ/GHB, поскольку трансдукция сигнала происходит только при димеризации рецепторов СТГ и правильной конформации димера. Димер рецептора СТГ/GHBP не способен выполнять функцию передачи сигнала. Подавление эффекта гормона за счет формирования таких гетеродимеров и связывания СТГ должно происходить дозозависимо от концентрации GHBP. И действительно, подобный эффект был продемонстрирован для естественно встречающихся и мутантных форм СТГ, лишенных внутриклеточного компонента (Ayling et al., 1997; Ross et al., 1997; Iida et al., 1999). Непосредственных доказательств существования такого же явления для растворимого GHBP не получено, поэтому это предположение пока что остается гипотетическим. Укороченный (с отщепленным эктокомпонентом) рецептор СТГ, в отличие от GHBP, имеет трансмембранный компонент и остается связанным с мембраной. Если рецептор СТГ существует в мембране в предварительно димеризованной форме, даже при отсутствии связывания с СТГ (Ross et al.,2001) мембранная укороченная форма рецептора будет предоставлять возможность для образования гетеродимерных комплексов, поэтому концепция гетеродимеров рецептор СТГ/GHBP по-прежнему нуждается в экспериментальном обосновании.

В отличие от своего ингибирующего воздействия in vitro, in vivo GHBP проявляет тенденцию к усилению действия соматотропного гормона. Белок, связывающий СТГ, продлевает время существования СТГ благодаря формированию комплекса большого размера, что препятствует эффективной гломерулярной фильтрации интактного гормона и выведению его с мочой — основной путь клиренса гормона роста (Baumann et al., 1987а, 1989b). Комплекс также снижает клиренс гормона, происходящий при участии рецептора СТГ путем клеточной интернализации гормона, и замедляет его химическую деградацию. У крыс СТГ в комплексе с GHBP имеет метаболический клиренс в 10 раз ниже по сравнению со свободным гормоном (Baumann et al., 1989b). У человека время полураспада комплекса СТГ—GHBP в плазме крови составляет 25—29 мин, тогда как для свободного гормона оно равно 4—9 мин (Veldhuis et al., 1993). Комплекс СТГ—GHBP, циркулирующий в кровеносной системе, служит своеобразным резервуаром гормона роста, который динамически гасит колебания его концентрации, возникающие вследствие пульсообразного характера секреции. Показано, что несмотря на свой ингибирующий эффект in vitro, GHBP в больших дозах усиливает биологическую активность СТГ in vivo (Clark et al., 1996). Таким образом, суммарный эффект высокоактивного СТГ-связывающего белка на действие СТГ в интактном организме является комплексным, зависит от концентрации и места, а также трудно предсказуем.

О модуляции действия СТГ низкоаффинным СТГ-связывающим белком известно крайне мало.

Учитывая его низкое сродство к гормону, вполне вероятно, что он формирует с гормоном роста слабый комплекс, который легко подвергается диссоциации, поэтому, вероятнее всего, что на динамику СТГ и его действие он оказывает крайне ограниченное воздействие.

Регуляция выработки СТГ-связывающего белка

У видов, в которых образование СТГ-связывающего белка происходит путем протеолиза, уровень его выработки зависит от экспрессии рецептора СТГ и регуляции активности ТАСЕ. Экспрессия рецептора СТГ зависит от стадии развития, пола, видовых особенностей, метаболического состояния; кроме того, она варьирует в различных тканях организма. О регуляции активности ТАСЕ в настоящее время не известно практически ничего. У грызунов продукция GHBP связана с экспрессией альтернативного варианта мРНК, кодирующего этот белок. Регуляция этого процесса также достаточно сложна, зависит от типа ткани и метаболического состояния организма, к тому же систематических исследований, которые бы позволили достаточно глубоко проникнуть в эту проблему, не существует. Из-за такой ограниченности данных мы будем обсуждать главным образом регуляцию уровня GHBP в сыворотке крови.

У человека основными физиологическими факторами, определяющими содержание СТГ-связывающего белка в сыворотке крови, являются степень развития организма, пол, возрастное старение и характер питания. По неизвестным причинам концентрация GHBP в сыворотке у здоровых субъектов варьирует в 10-кратном диапазоне приблизительно 0,3—3,0 нМоль (Rajkovic et al., 1994; Maheshwari et al., 1996). О возможном биологическом значении такой вариабельности также ничего не известно. Не обнаружено заметных вариаций в концентрации СТГ-связываюшего белка в сыворотке крови в течение суток (Snow et al., 1990; Carmignac et al., 1992; Carlsson L.M. et al., 1993), однако у детей обнаружены незначительные сезонные колебания с минимумом в августе (Gelander et al., 1998). Содержание GHBP в сыворотке крови крайне низкое у плода, резко возрастает в раннем детстве, остается постоянным в период полового созревания и зрелом возрасте и снова снижается, начиная с 60 лет (Daughaday et al., 1987; Holl et al., 1991; Martha et al., 1993; Maheshwari et al., 19%). Аналогичные изменения уровня СТГ-связывающего белка наблюдаются в онтогенезе у крыс (Mulumba et al., 1991). Уровень GHBP у женщин выше, чем у мужчин, подобные половые различия еще сильнее выражены у грызуном (Massa ct al., 1990; Hattori ct al., 1991; Rajkovic ct al., 1994). Вероятно, это в значительной степени обусловлено эффектом эстрогенов. В период беременности происходят изменения содержания СТГ-спязывающсго белка, которые в значительной мере проявляются у разных видов. У человека это незначительное возрастание GHBP (Blumcnfcld et al., 1992), тогда как у мыши содержание GHBP в сыворотке крови (а также мембранного GHBP в печени) возрастает очень сильно (Cramer et al., 1992; Camarillo ct al., 1998). Именно последний феномен послужил причиной первого упоминания о GHBP (Pccters, Friesen, 1977). У крыс в период беременности также происходит возрастание уровня СТГ-связывающего белка в сыворотке, но в меньшей степени по сравнению с мышами (Frick et al., 1998). Важным фактором, определяющим уровень GHBP, является питание. Неправильное питание приводит к снижению, а переедание — к возрастанию GHBP в сыворотке. Между индексом массы тела и уровнем СТГ-связывающего белка существует достоверная корреляция, особенно она выражена в случае зависимости количества висцеральных жировых отложений и уровня GHBP (Hochberg et al., 1992; Martha ct al., 1992; Roelen ct al., 1997b). Эти изменения происходят параллельно с изменениями содержания ИФР-1 и, вероятно, отражают эффект инсулина на экспрессию рецептора СТГ и соответственно уровень СТГ-связывающего белка (Baxter, Turtle, 1978; Mercado et al., 1992; Kratzsch ct al., 1996).

У грызунов возрастание СТГ приводит к росту количества СТГ-связывающего белка (Sanchez-Jimenez ct al., 1990; Carmignac ct al., 1992), однако данные no этому вопросу для человека противоречивы и не согласуются между собой (см. обзор Baumann, 2001). Из этого можно заключить, что СТГ не оказывает существенного влияния на уровень GHBP у человека. Интересно, что акромегалия — заболевание, связанное с постоянным повышенным уровнем СТГ, — в большинстве случаев ассоциирована с низким или сниженным уровнем GHBP (Amit et al., 1992; Roelen ct al., 1992; Mercado et al., 1993; Kratzsch ct al., 1995a; Fiskcr ct al., 1996). Возможно, это не обусловлено прямым воздействием СТГ, но может быть результатом других изменений, происходящих при акромегалии. Тиреоидный гормон увеличивает уровень GHBP (Amit et al., 1991; Romero et al., 1996). Эстрогены, особенно при пероралыюм применении, повышают уровень GHBP в сыворотке у человека и грызунов, но снижают его у кролика (Weissberger ct al., 1991; Carmignac ct al., 1993; Yu ct al., 1996). Андрогены понижают содержание GHBP в сыворотке (Postcl-Vinay ct al., 1991 b; Keenan ct al., 1996; Yu et al., 1996). Глюкокортикоиды снижают уровень GHBP у человека и грызунов, но повышают его у кроликов (Heinrichs ct al., 1994; Miell et al., 1994; Gabrielsson ct al., 1995). Инсулин поиышаст уровень GHBP (Mercado et al., 1992; Massa et al., 1993; Kratzsch et al., 1996), в то время как ИФР-1 понижает его (Silbergcld et al., 1994).

Двигательная активность и физические тренировки влияют на уровень GHBP в плазме крови. Интенсивная физическая нагрузка, например велоэргометрия, стимулирует кратковременное небольшое повышение GHBP (Wallace et al., 1999). Показано, что в результате продолжительных занятий аэробными упражнениями или фитнесом в большинстве случаев наблюдается снижение СТГ-связывающего белка в сыворотке крови на 10—40 % (Rocmmich, Sinning, 1997; Eliakim et al., 1998b, 2001; Scheett et al., 2002), олнако в одном из подобных исследований обнаружили небольшое увеличение GHBP (Roelen et al., 1997а). Уровень GHBP в крови обратно пропорционален пиковому потреблению кислорода и уровню физической подготовленности (Eliakim et al., 1998а). Это отчасти обусловлено упомянутой выше взаимосвязью между ожирением и GHBP. Физиологическое значение таких изменений GHBP, обусловленных двигательной активностью и физическими тренировками, еще предстоит понять до конца.

СТГ-связывающий белок и заболевания

С отклонениями от нормы уровня СТГ-связывающего белка в сыворотке крови связаны несколько патологических состояний. В большинстве случаев изменения GHBP происходят параллельно с изменением чувствительности к соматотропному гормону, поэтому предполагают, что количественные изменения GHBP отражают повышенный уровень тканевого рецептора СТГ. Наиболее распространенным среди нарушений, при которых наблюдаются отклонения от нормы GHBP, является синдром нарушения чувствительности к СТГ, обусловленный инактивирующей мутацией гена CHR (синдром Ларона), при котором происходит существенное замедление роста и нанизм (Rosenfeld et al., 1994). Отсутствие или нарушение функции рецептора СТГ обычно является прямым следствием мутантного гена GHR, который либо не экспрессируется (в случае делеции гена или нонсенс-мутации), подвергается преждевременной деградации или утрачивают сигнал, определяющий локализацию в плазматической мембране (в случае некоторых миссенс-мутаций), либо не способен связываться с СТГ (определенные миссенс-мутации) (обновленный список известных мутаций гена GHR можно найти в работе Baumann, 2002). Отсутствие GHBP-актииности в сыворотке крови пациентов с синдромом Ларона стало первым веским доказательством того, что СТГ-связывающий белок является фрагментом рецептора СТГ (Baumann et al., 1987b; Daughaday, Trivedi, 1987). Примерно у 80 % больных синдромом Ларона GHBP в крови содержится в крайне низких концентрациях или не обнаруживается вообще (Woods et al., 1997). У остальных уровень СТГ-связывающего белка нормальный или в редких случаях даже повышенный. У таких больных мутации гена GHR выражаются в утрате способности к димеризации рецептора или в отсутствии у рецептора внутриклеточного сигнального компонента (Du-quesnoy et al., 1994; Ayling et al., 1997; Kaji et al., 1997; Iida et al., 1998; Gastier et al., 2000). В случае мутации, сопровождающейся утратой трансмембранного компонента, происходит значительное возрастание активности GHBP в сыворотке крови, которая в этом случае отражает наличие мутантного растворимого рецептора СТГ, а не нормального GHBP (Woods et al., 1996; Silbergeld et al., 1997).

Некоторые заболевания, обусловленные приобретенной нечувствительностью к соматотропному гормону, также характеризуются аномально низким уровнем СТГ-связывающего белка. Катаболические нарушения, такие, как нарушение питания, неконтролируемый диабет, обусловленный инсулинорезистентностыо, посттравматичсские состояния и острые заболевания, являются примерами приобретенной устойчивости к СТГ, которая характеризуется низким уровнем ИФР-1, несмотря на нормальный или повышенный уровень секреции СТГ. В случае серьезных нарушений могут происходить нарушения роста (синдром Мориака, состояние плохо компенсируемого диабета в сочетании с гепатомегалией и задержкой роста) (Mandell, Berenberg, 1974; Mauraset al., 1991). Тот факт, что содержание GHBP в сыворотке снижается в случае нарушений, связанных с утратой чувствительности к СТГ, подтверждают представления о том, что концентрация GHBP в сыворотке крови отражает количественную представленность рецептора СТГ в тканях организма. На животных моделях катаболические состояния связаны со снижением уровня рецептора СТГ в печени и снижением чувствительности к СТГ (Baxter, Turtle, 1978; Postel-Vinay et al., 1982; Massa et al., 1993). После устранения процесса заболевания, лежащего в основе этих нарушений, чувствительность к СТГ, экспрессия рецептора СТГ и уровень СТГ-связывающего белка возвращаются к норме. Считают, что изменения экспрессии рецептора СТГ и последующего протеолитического образования GHBP в значительной степени опосредованы инсулином (Mercado et al., 1992; Hanaire-Broutin et al., 1996).

Противоположность отсутствию чувствительности к СТГ — гиперчувствителыюсть к СТГ — ассоциирована с повышенным уровнем GHBP. Единственным хорошо распознаваемым нарушением в этой группе является переедание/ожирение, которое характеризуется нормальным или повышенным уровнем ИФР-1 вследствие подавленной секреции СТГ. Уже давно обнаружено, что дети с избыточной массой тела растут быстрее по сравнению с худыми детьми (Forbes, 1977). Ожирение связано с повышенным уровнем GHBP в сыворотке крови, что может отражать повышенную активность тканевого рецептора СТГ (Hochberg et al., 1992; Kratzsch et al., 1997a; Roelen et al., 1997b). Таким образом, по биохимическим параметрам и функциональным аспектам системы СТГ-ИФР ожирение является прямой противоположностью недостаточного питания.

Об изменениях уровня низкоаффинного СТГ-связывающего белка в сыворотке крови в норме и при различных заболеваниях практически ничего не известно.

Методы определения СТГ-связывающих белков

Классические методы определения высокоаффинных и низкоаффинных СТГ-связывающих белков основаны на оценке их функциональной способности связываться с мечеными и радиоактивными изотопами СТГ с последующим разделением свободного СТГ и комплексов с GHBP методом эксклюзионной хроматографии (Baumann et al., 1986; Herington et al., 1986b). В большинстве случаев этот метод позволяет получить количественную оценку, поскольку в физиологических условиях GHBP находятся в сыворотке преимущественно в несвязанном состоянии. Поправку на связывание высокоаффинного GHBP с эндогенным СТГ следует вносить при концентрациях гормона, превышающих 10 нг-мл-1 (Baumann et al., 1989а). Варианты этого базового метода определения GHBP связыванием с СТГ используют другие методы разделения свободного и связанного СТГ, например сорбцией активированным углем или иммунопреципитацией с антителами к рецептору СТГ (Barnard et al., 1989; Amit et al., 1990; Ho et al., 1993). Для грызунов были разработаны специфические методы анализа, позволяющие различить СТГ-связывающие белки и рецептор СТГ с использованием антител против уникального гидрофильного “хвоста” молекулы GHBP фызунов (Barnard et al., 1994). Однако этот подход нельзя использовать для тех видов, где образование GHBP происходит путем протеолиза рецептора СТГ (т. е. человека, кролика и др.). Для детекции высокоаффинного СТГ-связывающего белка человека был разработан двухсайтный сэндвич-анализ, использующий некоторые принципы твердофазного иммуноанализа ELISA, — гормон-опосредованный иммунно-функциональный анализ (ligand-mediated immuno-functional assay, LIFA) (Carlsson et al., 1991). Результаты, полученные с помощью этого анализа, хорошо согласуются с оценками стандартных методик, основанными на образовании комплекса GHBP—СТГ, однако по неизвестным причинам он дает абсолютные количественные оценки GHBP ниже по сравнению с другими методами (Mercado et al., 1993). Существует одно сообщение о разработке метода определения GHBP человека, основанного на применении принципов классического радиоиммуниого анализа (меченый радиоактивными изотопами GHBP и антитела против GHBP) (Kratzsch et al., 1995а). Этот метод анализа не зависит от способности GHBP связываться с СТГ и поэтому может быть использован для количественной оценки мутантных форм СТГ-связывающего

Видео п
теме

Эндокриная система, спорт и двигательная активность.
Перевод с англ./под ред. У.Дж. Кремера и А.Д. Рогола. — Э64
Издательство: Олимп. литература, 2008 год.

Что предлагают интернет магазины?
SPORTGUARDIAN.RU
Logo