препараты Противовирусные средства

Противовирусные средства

Вирусы состоят в основном из генетического материала (нуклеиновые кислоты, ДНК, на рис. А изображены зеленым цветом), заключенного в оболочку — капсид (синий шестиугольник); чаще всего это двухслойная фосфолипидная мембрана (серое кольцо) со встроенными белками (синие черточки). У вирусов нет собственного обмена веществ, они размножаются за счет пораженной ими клетки-хозяина. Для лечения вирусных заболеваний необходимо ингибировать обменные процессы в инфицированных клетках, которые участвуют в размножении вирусов.

Размножение вирусов на примере вируса простого герпеса (Herpes simplex) (А). Вирус простого герпеса содержит двухцепочечную ДНК.

1. Вирусная частица прикрепляется (адсорбируется) на поверхности клетки-мишени, при этом гликопротеины оболочки вируса взаимодействуют со специальными структурами клеточной мембраны.

2. Оболочка вируса встраивается в клеточную мембрануклетки-мишени и нуклео-капсид (нуклеиновые кислоты + капсид) входит внутрь клетки (проникновение).

3. Капсид раскрывается («раздевание вируса») — у вируса герпеса этот процесс происходит на порах ядра — и ДНК вируса проникает в ядро; с этого момента генетический материал вируса может управлять метаболизмом клетки.

4а. Синтез нуклеиновых кислот: генетический материал вируса (в данном случае ДНК) многократно реплицируется, далее образуется РНК, необходимая для синтеза белка.

46. Вирусные белки представляют собой ферменты, необходимые для размножения (например, ДНК-полимераза и тимидинки-наза), а также материал для построения капсида или вирусной мембраны (они могут также встраиваться в мембрану клетки).

5. Сборка компонентов вирусной частицы.

6. Высвобождение дочерних вирусов, которые могут распространяться внутри организма и вне его.

Размножение вируса герпеса приводит к гибели клетки-мишени; при этом проявляются симптомы заболевания.

Защита организма от вирусов (А). Организм защищается от размножения вирусов с помощью цитотоксических Т-лимфоцитов, которые узнают клетки, продуцирующие вирусы (по наличию на поверхности клеток индуцированных вирусом белков) и уничтожают их. Кроме того, организм защищается с помощью антител, которые инактивируют вирусные частицы, находящиеся вне клетки. Профилактические противовирусные прививки имеют своей целью активировать механизм специфической иммунной защиты организма.

Интерфероны (ИНФ) представляют собой гликопротеины, высвобождаемые инфицированными вирусом клетками. Интерфероны стимулируют в соседних клетках продукцию антивирусных белков, которые тормозят синтез вирусных белков путем разрушения вирусной РНК или вызывают нарушение трансляции. Действие интерферонов не направлено на определенный вирус. Однако они специфичны в отношении организмов, т. е. для лечения людей нужен человеческий интерферон. Интерфероны получают из лейкоцитов (ИНФ-а), фибробластов (ИНФ- β ) или лимфоцитов (ИНФ-у). Интерфероны применяют для лечения некоторых вирусных заболеваний, злокачественных новообразований и аутоиммунных заболеваний: ИНФ-а — для лечения хронического гепатита С и волосатоклеточного лейкоза, ИНФ- β — для лечения тяжелых форм герпеса и рассеянного склероза.

Вирусостатические актиметаболиты — аналоги нуклеозидов (Б). Нуклеозид (например, тимидин) состоит из основания (тимина) и сахара дезоксирибозы. В антиметаболите один из компонентов имеет аномальную структуру. Аномальный нуклеозид после присоединения трех фосфатных групп блокирует дальнейший синтез ДНК.

Идоксуридин и аналогичные соединения встраиваются в ДНК и повреждают ее. Синтез ДНК человека при этом также нарушается, поэтому данные препараты применяют только местно (например, при герпетическом кератите).

Ацикловир является самым эффективным препаратом среди вирусостатических антиметаболитов и лучше всех переносится. Ацикловир активируется только в инфицированных клетках, блокируя в них синтез вирусной ДНК.

1. Первый этап фосфорилирования осуществляет тимидинкиназа, имеющаяся только у вируса Herpes simplex и Varicella zoster,; две другие фосфатные хруппы переносят клеточные киназы.

2. Трифосфат ацикловира как полярное соединение не может проникать через мембраны и накапливается в инфицированной клетке.

3. Трифосфат ацикловира воспринимается вирусной ДНК-полимеразой в качестве субстрата, происходит ингибирование фермента, а также обрыв цепи вирусной ДНК, так как отсутствует З’-гидроксигруппадезоксирибозы, необходимая для присоединения последующих нуклеотидов. Ацикловир высокоэффективен при тяжелых герпетических инфекциях (например, энцефалите, генерализованной инферкции) и инфекциях, вызванных вирусом Varicella zoster (например, тяжелые формы опоясывающего лишая). В этих случаях ацикловир назначается внутривенно. Препарат может также применяться перорально, однако всасывание происходит не полностью (15-30%). Кроме того, имеются лекарственные формы для местного применения. Ацикловир не действует на ДНК человека, не вызывает угнетения костного мозга. Препарат выводится почками в неизмененном виде.

В валацикловире гидроксильная группа связана эфирной связью с аминокислотой L-валином. Благодаря этому всасывание увеличивается в два раза по сравнению с ацикловиром. В стенке кишечника и в печени остаток валина отщепляется эстеразами, и в результате образуется ацикловир.

Фамцикловир — антигерпетическое пролекарство (действующее вещество пенцикловир), обладает хорошей биодоступностью при пероральном применении.

Ганцикловир применяется для инфузионного введения при тяжелых инфекциях, вызванных цитомегаловирусом (относится к группе вирусов герпеса). Механизм действия не связан с тимидинкиназой. Препарат не очень хорошо переносится: нередко наблюдается лейкопения и тромбоцитопения. Вводится инфузионно или перорально в форме валинового эфира (вал ганцикловир).

Фоскарнет представляет собой аналог дифосфата. При встраивании нуклеотида в ДНК отщепляется дифосфатный остаток. Фоскарнет блокирует ДНК-полимеразу, поскольку он конкурирует за места связывания дифосфатных остатков. Показания: системное лечение тяжелой формы цитомегаловирусной инфекции, СПИДа, местное лечение герпетической инфекции.

Средства против гриппа. Амантадин специфически блокирует размножение вируса гриппа А (РНК-вирус, возбудитель истинного гриппа). Вирусы попадают в клетку путем эндоцитоза. Для высвобождения РНК необходимо, чтобы из кислого содержимого эндосом протоны попадали внутрь вируса. Амантадин блокирует канал в вирусной оболочке, через который проходят протоны. Поэтому «раздевание» вируса становится невозможным. Препарат применяется для профилактики, иногда для уменьшения симптомов заболевания. Амантадин является также противопаркинсоническим средством.

Ингибиторы нейраминидазы препятствуют высвобождению вирусов гриппа А и В. Вирусная нейраминидаза отщепляет N-ацетилнейраминовую (сиаловую) кислоту от поверхности клетки и таким образом помогает вирусной частице отделиться от клетки-мишени. Занамивир применяется ингаляционно, озелтамивир назначают перорально, так как этот эфир является предшественником действующей формы лекарства. Возможные области применения — лечение и профилактика гриппа.

История противовирусных средств

За последние десять лет появилось много новых противовирусных препаратов — большинство из них для борьбы с ВИЧ-инфекцией и ее осложнениями (Hayden, 2000; Balfour, 1999). В настоящей главе собраны сведения о препаратах, применяемых для лечения инфекций, вызванных ДНК- и РНК-содержащими вирусами. Препараты, действующие на ретровирусы, в частности на ВИЧ, рассмотрены отдельно (гл. 51). Многие противовирусные препараты избирательно действуют на один из этапов вирусной инфекции и жизненного цикла вирусов. Здесь же рассматриваются и интерфероны — цитокины, обладающие противовирусным, иммуномодулирующим и антипролиферативным эффектом. Особое внимание уделено препаратам, действующим на герпесвирусы и вирусы гриппа. Обсуждаются также вопросы эффективности противовирусной терапии и устойчивости вирусов. Многие противовирусные препараты являются аналогами пуриновых и пиримидиновых нуклеозидов.

Все вирусы содержат одно- или двухцепочечную РНК или ДНК, заключенную в белковую оболочку — капсид. У некоторых вирусов есть также внешняя оболочка из липопротеидов, на поверхности которой, как и на поверхности капсида, могут располагаться белковые антигены. Большинство вирусов содержат ферменты (или гены для их синтеза), необходимые для репродукции в клетке-хозяине. У вирусов нет собственного обмена веществ, и они используют метаболические пути клетки-хозяина, которой может служить бактерия, клетка растения или животного. Более глубокое изучение жизненного цикла вирусов позволит создать новые противовирусные препараты, действующие на ту или иную его стадию (табл. 50.1). Противовирусные средства должны избирательно подавлять синтез вирусных (но не клеточных) нуклеиновых кислот и белков. В настоящей главе представлены сведения о противовирусной активности, фармакокинетике и клиническом применении отдельных противовирусных препаратов. Те из них, которые прошли клинические испытания и разрешены к применению, перечислены в табл. 50.2.

На рис. 50.1 схематически показаны циклы репродукции ДНК- и РНК-содержащих вирусов. К ДНК-содержащим вирусам относятся поксвирусы (натуральная оспа), герпесвирусы (ветряная оспа, опоясывающий лишай), аденовирусы (вирусный конъюнктивит и фарингит), гепаднавирусы (гепатит В) и вирус папилломы человека (бородавки и остроконечные кондиломы). Геном большинства ДНК-содержащих вирусов транскрибируется в ядре клетки-хозяина при участии ее РНК-полимеразы, при этом сначала на вирусной ДНК синтезируется мРНК, затем происходит трансляция мРНК и синтез вирусных белков. Исключение составляют поксвирусы, у которых есть собственная РНК-полимераза, поэтому их репродукция может происходить в цитоплазме клетки-хозяина.

РНК-содержащие вирусы либо синтезируют мРНК с помощью собственных ферментов, либо функции мРНК начинает выполнять вирусная РНК. На ней синтезируются вирусные белки, в том числе РНК-полимераза, под действием которой затем образуется собственная мРНК вируса (рис. 50.1, Б). Транскрипция генома некоторых РНК-содержащих вирусов, например вируса гриппа, происходит только в ядре клетки-хозяина. К РНК-содержащим вирусам относятся вирус краснухи, рабдовирусы (бешенство), пикорнавирусы (полиомиелит, менингит, острые респираторные вирусные инфекции), аренавирусы (менингит, лихорадка Ласса), арбовирусы (желтая лихорадка, арбовирусные энцефалиты), ортомиксовирусы (грипп) и парамиксовирусы (корь, эпидемический паротит).

Таблица 50.1. Препараты, действующие на разных стадиях вирусной инфекции

Стадии вирусной инфекции

Препараты и их механизм действия

Заражение

Растворимые ложные рецепторы; антитела к мембранным рецепторам; ингибиторы слияния вируса с клеточной мембраной

Адсорбция на клеточной мембране

Проникновение в клетку

Раздевание

Блокаторы ионных каналов; стабилизаторы капсида

Высвобождение нуклеиновой кислоты

Транскрипция вирусного генома*

Ингибиторы вирусных ДНК-полимераз, РНК-полимераз, обратной транскриптазы, геликазы, праймазы, интегразы

Транскрипция вирусной мРНК

Репликация вирусного генома

Трансляция вирусных белков

Интерфероны; антисмысловые олигонуклеотиды, рибозимы

Регуляторные белки (ранние)

Ингибиторы регуляторных белков

Структурные белки (поздние)

Нет

Посттрансляционные модификации

Нет

Протеолитическое расщепление

Ингибиторы протеаз

Присоединение миристиновой кислоты; гликозилирование

Нет

Сборка вируса

Интерфероны; ингибиторы структурных белков

Выход из клетки

Ингибиторы нейраминидазы; противовирусные антитела; цитотоксические лимфоциты

Отпочковывание, лизис клетки

Зависит от особенностей репродукции данного вируса, но всегда протекает при участии вирусных ферментов.

Особого внимания заслуживает семейство ретровирусов, которые также относятся к РНК-содержащим вирусам. Ретровирусы вызывают такие заболевания, как ВИЧ-инфекция (гл. 51) и Т-клеточный лейкоз-лимфома взрослых (Т-лимфотропный вирус человека типа 1). У этих вирусов есть обратная транскриптаза — фермент, под действием которого на основе вирусной РНК синтезируется комплементарная ей ДНК — провирус, которая затем встраивается в геном клетки-хозяина. В дальнейшем при транскрипции образуется как клеточная РНК, так и мРНК вируса. На вирусной мРНК, в свою очередь, синтезируются вирусные белки для сборки новых вирусов.

При разработке новых противовирусных препаратов были вскрыты некоторые практически значимые общие закономерности.

  • Большинство соединений, обладающих противовирусной активностью in vitro, в организме нарушают жизнедеятельность клеток и слишком токсичны для человека.
  • Эффективные препараты, как правило, имеют узкий спектр действия, и мишенями их являются отдельные вирусные белки — чаще всего ферменты (полимераза или транскриптаза), участвующие в синтезе нуклеиновых кислот вируса.
  • Для появления устойчивости к препарату бывает достаточно замены одной пары нуклеотидов, приводящей к изменению аминокислотной последовательности в вирусном белке-мишени. Отбор штаммов вируса, устойчивых к тому или иному препарату, свидетельствует об избирательности действия этого препарата.
  • Современные препараты подавляют репродукцию вируса, но после их отмены вирус может вновь начать размножаться. В связи с этим при вирусных инфекциях важнейшую роль играет иммунный ответ; лечение может оказаться безрезультатным как при появлении устойчивых штаммов вируса, так и при тяжелых нарушениях иммунитета. Устойчивые штаммы (например, герпесвирусы, ВИЧ-1) выделяют в основном от больных с ослабленным иммунитетом и активной репродукцией вируса, которые получали повторные или продолжительные курсы противовирусной терапии. Исключение составляет вирус гриппа, геном которого и сам по себе характеризуется высокой изменчивостью.
  • На вирусы, находящиеся в латентном состоянии, современные препараты не действуют, хотя некоторые из этих препаратов способны в течение длительного времени сдерживать рецидив заболевания.
  • Эффективность препарата определяется его концентрацией в клетках, которая должна быть достаточно высокой, чтобы подавить репродукцию вирусов. Например, аналоги нуклеозидов начинают действовать только после их захвата клетками и фосфорилирования, поэтому эффективность лечения зависит от концентрации необходимых ферментов и конкурирующих субстратов, а следовательно, от типа клетки и особенностей ее метаболизма.
  • Пробы на чувствительность к противовирусным препаратам in vitro не стандартизованы, и их результат зависит от метода анализа, типа клеток, штамма вируса и лаборатории. Поэтому для большинства противовирусных средств не установлено четких закономерностей между эффективной концентрацией in vitro, концентрацией в крови и других биологических жидкостях и клинической эффективностью.

    Рисунок 50.1. Циклы репродукции ДНК- и РНК-содержащих вирусов на примере герпесвирусов (А) и вируса гриппа (Б).

Таблица 50.2. Разрешенные к применению противовирусные препараты

Препарат

Синонимы

Путь введения

Препараты, действующие на герпесвирусы

Ацикловир

Валацикловир

Видарабин

Ганиикловир

Докозанол

Идоксуридин

Пенцикловир

Трифлурндин

Фамцикловир

Фомивирсен

Фос карнет

Цидофовир

ACV, ациклогуанозин

АраА, аденин арабинозид

GCV, DHPG

IDUR

PCV

TFT, трифтортимидин FCV

ISIS-2922

PFA, фос фоноформат НРМРС

В/в; внутрь; М; глазная мазь, глазной крем Внутрь

Глазной гель, глазная мазь; в/в*

В/в; внутрь; раствор для инъекций в стекловидное тело; глазной гель

М

Глазная мазь, глазные капли М; в/в*

Глазные капли Внутрь

Раствор для инъекций в стекловидное тело В/в; внутрь*

В/в; М*

Препараты, действующие на вирус гриппа

Амантадин

Занамивир

Озельтамивмр

Римантадин

GC-167

GS-4I04

Внутрь

Ингаляции

Внутрь

Внутрь

Прочие противовирусные препараты

Имиквимод Интерферон а

(а-2а, а-2Ь, а-пЗ; ал ьфакон -1; a-n 1)

Ламивудин

Пегинтерферон а-2а’

Пегинтерферон а-2Ь

Рибавирин

М

П/к, в/м, в/в, введение в кондилому

Внутрь

П/к

П/к

Внутрь, ингаляции, в/в*

Другие противовирусные препараты

Интерфероны

Классификация и противовирусная активность

Интерфероны — это мошные цитокины, обладающие противовирусным, иммуномодулируюшим и антипролиферативным действием (Baron et ai., 1992; см. также гл. 53). Они синтезируются клетками под воздействием различных факторов и запускают биохимические механизмы защиты клеток того же вида животных от вирусов. В ор ганизме человека вырабатываются три группы интер. феронов, обладающих противовирусным действием- а(более 18 представителей), бета и у. Применяемые в клинической практике рекомбинантные интерфероны а -это негликозилированные белки с молекулярной массой около 19 500 (табл. 50.2).

Синтез интерферонов аир может идти почти во всех клетках. Пусковыми стимулами для образования интерферонов могут служить вирусы, двухцепочечная РНК некоторые цитокины (в том числе ИЛ-1, ИЛ-2, ФНО) другие факторы. Интерферон у вырабатывается только Т- и NK-лимфоцитами при их стимуляции антигенами митогенами и некоторыми цитокинами. Функции интерферонов а и р разнообразны: они обладают противовирусным и антипролиферативным действием; усиливают цитотоксическую активность Т-лимфоцитов, NK-лим-фоцитов и макрофагов; повышают экспрессию антигенов HLA класса I и других поверхностных антигенов. Интерферон у менее активен в отношении вирусов, но оказывает более сильное иммуномодулирующее действие: активирует макрофаги, стимулирует экспрессию антигенов HLA класса II и опосредует местные воспалительные реакции.

Интерфероны подавляют репродукцию большинства вирусов животных, но на многие ДНК-содержащие вирусы действуют слабо. Данные о противовирусной активности интерферонов сильно различаются в зависимости от вируса и метода анализа. Биологическую активность интерферонов определяют обычно по их противовирусному действию в культуре клеток и выражают в международных единицах (ME) в соответствии с общепринятыми стандартами.

Механизм действия

Связывание интерферонов со специфическими клеточными рецепторами активирует внутриклеточную передачу сигнала, в которой участвуют Янус-киназы и факторы транскрипции STAT. В результате комплекс белков STAT отщепляется от рецептора и перемещается в клеточное ядро, где взаимодействует с генами, несущими интерферон-чувствительный регуляторный элемент. Тем самым запускается синтез более двух десятков белков, действие которых направлено на подавление вируса (Stark etal., 1998; рис. 50.3). Интерфероны действуют на все основные этапы репродукции вируса: проникновение в клетку и раздевание, синтез вирусной мРНК, трансляцию вирусных белков, сборку и выход вируса из клетки. Самое грозное для многих вирусов свойство интерферонов — подавление синтеза вирусных белков. Интерфероны индуцируют выработку 2′,5′-олигоаденилат-синтетаз и протеинкиназы PKR. В присутствии двухцепочечной РНК под действием 2′,5′-олигоаденилатсинтетаз образуются 2′,5′-олигоаденилаты, которые, в свою очередь, активируют рибонуклеазу L, расщепляющую как вирусные, так и клеточные одноцепочечные РНК. Протеинкиназа PKR избирательно фосфорилирует и тем самым блокирует фактор инициации трансляции eIF2a, без которого невозможен синтез вирусных белков. Кроме того, она может запускать апоптоз. Интерфероны индуцируют также фосфодиэстеразу, которая отщепляет часть молекулы тРН К, что препятствует элонгации полипептидной цепи. В зависимости от вида вируса интерфероны могут действовать на различных этапах его репродукции. Некоторые вирусы способны подавлять выработку индуцируе мых интерферонами ферментов или снижать их активность. Так, один из механизмов устойчивости вируса гепатита С к интерферонам обусловлен способностью этого вируса подавлять протеинкиназу PKR (Francois et al., 2000).

Между интерферонами и другими компонентами иммунной системы существуют сложные взаимодействия. Интерфероны могут действовать на вирус напрямую или опосредованно — за счет изменения иммунного ответа. Например, повышая экспрессию антигенов HLA, они стимулируют лизис зараженных клеток цитотоксическимиТ-лимфоцитами. Помимо собственно противовирусного действия интерфероны участвуют в некоторых общих реакциях организма на вирусную инфекцию, в том числе в патологических иммунных реакциях, сопровождающихся повреждением тканей.

фармакокинетика

При приеме интерферонов внутрь обнаружить их в плазме не удается, а уровень 2′,5′-олигоаденилатсинтетазы в лимфоцитах почти не повышается (Wills, 1990). Зато при в/м или п/к введении интерферон а всасывается более чем на 80%. Сывороточная концентрация интерферона а зависит от дозы; через 4—8 ч после введения она достигает максимума, а через 18—36 ч возвращается к исходному уровню. При однократном введении уровень 2′,5′-олигоаденилатсинтетазы в лимфоцитах крови (показатель биологической активности интерферона) начинает возрастать через 6 ч и остается выше исходного уровня в течение 4 сут. Через 24 ч после введения интерферона а противовирусная активность лимфоцитов крови становится максимальной, а затем медленно (в течение 6 сут) возвращается к исходному уровню. Всасывание интерферона у при в/м или п/к введении менее постоянно, а сывороточная концентрация интерферона при таком введении невелика, хотя уровень 2′,5′-олигоаденилатсинтетазы в лимфоцитах крови может повышаться. Объем распределения интерферона а составляет в среднем 31л. При системном применении низкие концентрации интерферона о обнаруживают в секретах дыхательных путей, СМЖ, водянистой влаге и головном мозге.

Присоединение к интерферонам инертного полимера поли-этиленгликоля значительно замедляет их элиминацию из плазмы. Получаемые при этом интерфероны длительного действия (конъюгированные интерфероны, или пегинтерфероны) можно вводить всего 1 раз в неделю. Кроме того, присоединение полиэтиленгликоля снижает иммуногенность белковых препаратов. С ростом молекулярной массы полиэтиленгликоля возрастает Т1/2 препарата, уменьшаются его почечный клиренс и относительная противовирусная активность. В крупных клинических испытаниях изучена эффективность двух конъюгированных интерферонов. Пегинтерферон а-2Ь получен присоединением к интерферону а-2Ь линейной молекулы полиэтиленгликоля с молекулярной массой 12000. Т1/2 такого препарата увеличен с 2—3до54ч (Glueetal., 2000). Пегинтерферона-2а содержит эфир разветвленного полиэтиленгликоля с молекулярной массой 40 000; его Т1/2 еще выше — в среднем 77 ч. Около 70% пегинтерферона а-2Ь и большая часть пегинтерферона а-2а элиминируются путем печеночного метаболизма. Побочные эффекты. Через несколько часов после введения интерферонов (в дозе 1—2 млн МЕ и больше) часто возникает гриппоподобный синдром с лихорадкой, ознобом, головной болью, миалгией, артралгией, тошнотой, рвотой и поносом (Dus-heiko, 1997). Лихорадка обычно длится не более 12 ч, при приеме жаропонижающих препаратов перед введением интерферона она выражена слабее. В большинстве случаев со временем переносимость интерферона улучшается. Гриппоподобное состояние, неприятные ощущения в месте инъекции и лейкопения возникали почти у половины больных с остроконечными кондиломами при введении интерферона в кондилому.

При системном применении интерферон может вызывать угнетение кроветворения (нейтропению и тромбоцитопению), нарушения со стороны ЦНС (сонливость, спутанность сознания, изменение поведения, редко — эпилептические припадки), тяжелую астению с повышенной утомляемостью и потерей веса, аутоиммунные нарушения (в том числе хронический лимфоцитарный тиреоидит), реже — сердечно-сосудистые нарушения (артериальную гипотонию и тахикардию). Эти побочные эффекты препятствуют повышению дозы. Иногда отмечаются повышение активности печеночных ферментов и уровня триглицеридов в крови, алопеция, протеинурия и азотемия, интерстициальный нефрит, образование аутоантител. У детей при лечении интерфероном нередко возникают изменения личности и алопеция (Sokal et al., 1998). Изредка при введении интерферонов к ним вырабатываются нейтрализующие антитела, и тогда дальнейшее лечение становится бесполезным (Antonelli et al., 1991). Введение интерферонов может отрицательно сказываться на репродуктивной функции. Их безопасность при беременности не установлена.

Интерфероны замедляют инактивацию некоторых препаратов (например, теофиллина) микросомальными ферментами печени. В результате сывороточная концентрация таких препаратов повышается. Угнетение кроветворения, вызванное другими препаратами (например, зидовудином), на фоне введения интерферонов может усиливаться.

Переносимость конъюгированных интерферонов не хуже, чем обычных: отменять лечение приходится в 6—11% случаев. Тем не менее, по данным некоторых исследований, конъюгированные интерфероны несколько чаще вызывают лихорадку, тошноту и воспалительную реакцию в месте инъекции. Не ясно пока, представляет ли опасность накопление и длительное пребывание полиэтиленгликоля в организме.

Применение

В США разрешены рекомбинантные, природные и конъюгированные интерфероны а (табл. 50.2). Их используют для лечения остроконечных кондилом, хронических гепатитов С и В,саркомы Капошиу ВИЧ-инфицированных, злокачественных новообразований, рас сеянного склероза.

Гепатит В. При парентеральном введении интерферо. нов у 25—50% больных хроническим гепатитом В исчезают вирусная ДНК и HBeAg (е-антиген вируса гепатита В), начинается выработка антител к HBeAg, улучшаются биохимические показатели функции печени и гистологическая картина (Haria and Benfield, 1995; Main and Thomas, 1997). Длительная ремиссия возможна лишь при продолжительном назначении ин

Видео по теме

«Наглядная фармакология».
Автор: X. Люльман. Пер. с нем. Изд.: М.: Мир, 2008 г.

Что предлагают интернет магазины?
SPORTGUARDIAN.RU
Logo