Ось гипоталамус-гипофиз-яички

Регуляция функции семенников

Ось гипоталамус-гипофиз-яички (гипогаламо-гипофизарно-гонадная система) — это гормонально взаимосвязанная система органов. Семенники (яички) млекопитающих являются местом формирования половых клеток и выработки андрогенов (Rommerts, 2004). Тестостерон — стероид, который содержит 19 атомов углерода и секретируется семенниками, представляет собой андроген, преобладающий у большинства млекопитающих. Тестостерон играет важную роль в размножении млекопитающих: необходим для поддержания половой функции, развития половых клеток и вторичных половых органов. У взрослых животных он оказывает дополнительное воздействие на мышечную и костную ткани, кроветворные процессы, свертываемость крови, уровень липидов в плазме крови, метаболизм углеводов и белков, психосексуальные и когнитивные функции. Во время формирования пола у плода млекопитающих тестостерон приводит к маскулинизации структур Вольфа и вызывает формирование внешних гениталий в виде мошонки и пениса. Кроме того, повышение уровня тестостерона в период полового созревания стимулирует соматический рост и вирилизацию у мальчиков.

Выработка андрогенов в семенниках регулируется главным образом лютеинизирующим гормоном (ЛГ), тогда как для формирования половых клеток требуется скоординированное действие фолликулостимулирующего гормона (ФСГ) и высокой внутри-семенниковой концентрации тестостерона, который вырабатывается клетками Лейдига под влиянием ЛГ (Rommerts, 2004). Паракринное взаимодействие между клетками Сертоли и половыми клетками также является важным компонентом регуляции сперматогенеза, хотя точная роль клеток Сертоли в регуляции развития половых клеток плохо понятна.

Функция семенников регулируется с помощью группы механизмов прямой и обратной связи, которые функционируют на уровне гипоталамуса, гипофиза и семенников. Так, волнообразная секреция гонадолиберина (гонадотропин-рилизинг гормона) стимулирует секрецию ЛГ и ФСГ, которая в свою очередь регулируется путем цепи обратной связи с участием половых гормонов, включая половые стероиды, а также ингибин и активин.

Тестостерон может превращаться в эстрогены под влиянием ароматазы. Преимущественно эстрогены, а не тестостерон подавляют ось гипоталамус-гипофиз-яички и снижают секрецию эндогенного тестостерона при введении экзогенных препаратов.

Секреция гонадолиберина гипоталамическими нейронами

Миграция нейронов, продуцирующих гонадолиберин, в процессе развития плода. Нейроны, продуцирующие гонадолиберии, происходят из области обонятельной пластинки (Schwanzel-Fukuda, Pfaff, 1989)и мигрируют вдоль обонятельных нервов в передний мозг и затем в место своего окончательного расположения в гипоталамусе. Такая упорядоченная миграция гонадолиберинпродуцирующих нейронов требует скоординированного действия молекул, определяющих направление адгезионных белков, таких, как продукт гена KALIG-1 и рецептор роста фибробластов, а также ферментов, которые помогают нейрональным клеткам прокладывать свой путь в межклеточном пространстве. Мутация любого из этих белков может воспрепятствовать процессу миграции и привести к возникновению дефицита гонадолиберина. У группы пациентов нарушение такой онтогенетической миграции гонадолиберинпродуцирующих нейронов в их окончательное место локализации в гипоталамусе приводит к заболеванию, которое носит название идиопатического гипогонадотропного гипогонадизма, которое характеризуется дефицитом гонадолиберина и нарушением секреции гонадотропина гипофизом (Legouis et al., 1991).

Гипоталамус как интегрирующий центр мужской репродуктивной системы является интегрирующим центром репродуктивной системы и координирует регуляторные сигналы из высших центров и сигналы обратной связи из гонад (Knobil, 1980; Crowley et al., 1991). В гипоталамус поступает информация из центральной нервной системы, которая отражает влияние эмоций; стресса, света, обонятельных стимулов, температуры и других внешних факторов. Сигналы обратной связи от гонад включают стероидные гормоны (тестостерон и эстрадиол) и белковые гормоны (ингибин и активин).

Регуляция ЛГ и ФСГ волнообразной секрецией гонадолиберина. Гонадолиберин представляет собой главный регулятор секреции гонадотропина и увеличивает секрецию ЛГ и ФСГ клетками гипофиза как in vitro, так и in vivo. Волнообразный характер секреции гонадолиберина имеет важное значение для поддержания нормальной секреции ЛГ и ФСГ гипофизом (Belchetz et al., 1978; Knobil, 1980; Shupnik, 1990; Crowley et al., 1991; Weiss et al., 1992). Непрерывное введение гонадолиберина или применение длительно действующих агонистов гонадолиберина приводит к снижению секреции ЛГ и ФСГ — явлению, известному как негативная регуляция(Belchetz et al., 1978; Knobil, 1980). Xaрактер секреции гонадолиберина (амплитуда и частота секреторных выбросом) определяет количественный и качественный состав сскретируемых гонадотропинов (Belchetz et al., 1978; Haiscnleder et al., 1988, 1991; Kim ct al., 1988a, 1988b; Yuan et al., 1988; Shupnik, 1990; Weiss ct al., 1992). Заметное увеличение частоты выбросов гонадолиберина также приводит к утрате чувствительности гонадотропных клеток и последующему уменьшению секреции ЛГ и ФСГ (Belchetz et al., 1978; Merccr et al., 1988; Shupnik, 1990). Электрофизиологическая активность гипоталамических нейронов, продуцирующих гонадолиберин, взаимосвязана с его периодическими секреторными выбросами.

Периодическое применение гонадолиберина индуцирует транскрипцию гена LH-р in vitro (Wicrman ct al., 1989; Shupnik, 1990; Weiss ct al., 1992). Непрерывное введение гонадолиберина усиливает транскрипцию только а-гена, но не генов Р-субъединицы ЛГ или ФСГ (Haiscnleder ct al., 1988). Периодическое применение гонадолиберина также изменяет полиаденилиронание мРНК составляющей ЛГ (Weiss ct al., 1992). Частота стимуляции гонадолиберином имеет важное значение для дифференциальной регуляции генов LH-Р и FSH-бета (Haiscnlcdcrct al., 1988). Болес высокая частота усиливает a-гены и LH-бета, a более низкая — FSH-бета, что стало основанием для предположения о том, что изменения частоты выбросов гонадолиберина могут быть одним из механизмов регуляции выработки двух функционально различных гонадотропинов с помощью одного гипоталамического рилизинг-гормона (Haiscnlcdcr et al., 1988). Непрерывная инфузия гонадолиберина или применение агониста гормона приводит к снижению уровня мРНК LH-p, в то время как уровень мРНК LH-a остается повышенным (Haiscnlcdcr ct al., 1988; Kim ct al., 1988a. 1988b; Yuan ct al.. 1988).

Значительная часть информации в отношении физиологии секреции гонадолиберина была получена при исследовании волнообразного характера изменений уровня ЛГ и ФСГ у мужчин и женщин в норме, а также при изучении эффектов гормонзамещающей терапии с использованием гонадолиберина у больных с идиоматическим гипогонадотронпым гипогонадизмом (Urban ct al., 1988; Crowley ct al., 1991). Исследования таких пациентов с гипоталамическим дефицитом гонадолиберина показывают, что периодическое внутривенное введение этого гормона в количестве 25 нг-кг’1 позволяет воспроизвести нормальную волнообразную секрецию ЛГ со всеми се особенностями (Crowley ct al., 1991). Пиковый уровень гонадолиберина после внутривенного введения такой дозы гормона (500- 1000 пг-мл4) напоминает тот, который можно обнаружить у приматов в случае прямого забора крови из портальной системы гипофиза (Crowley ct al., 1991). У мужчин с идиоматическим гипогонадотрониым гипогопадизмом оптимальный интервал между повышениями уровня гонадолиберина составил 2 ч (Crowley et al., 1991). Увеличение частоты пульсов гонадолиберина ведет к прогрессивному снижению чувствительности к гонадолиберину ЛГ-продуцируюших нейронов (Rebar et al., 1976). Снижение частоты пульсов гонадолиберина или увеличение интервала между ними повышает амплитуду последующего секреторного выброса ЛГ. Существует линейная зависимость между логарифмом дозы пульса гонадолиберина и количеством секретируемых ЛГ, ФСГ и свободной а-составляющей (Spratt et al., 1986; Whitcomb et al., 1990). У взрослых мужчин амплитуда повышения уровня ЛГ в ответ на гонадолиберии значительно превышает амплитуду повышения уровня ФСГ.

Интенсивный забор крови у здоровых мужчин и женщин выявил обширный набор характеристик волнообразного изменения уровня ЛГ (Urban et al., 1988). Средние характеристики показателей колебаний уровня ЛГ у мужчин, по данным одного из недавних исследований (Urban ct al., 1988), выглядят следующим образом; интервал между секреторными выбросами 55 мин, продолжительность пиков ЛГ 40 мин, амплитуда пиков ЛГ 37 % от исходного уровня (увеличение на 1,8 mLU-мл-1)- Значительная вариабельность параметров изменений уровня ЛГ у здоровых мужчин и женщин в норме обусловливает необходимость предосторожностей при интерпретации небольших отклонений в частоте и амплитуде колебаний гормона. Частота забора крови и подход, используемый для количественной оценки параметров колебаний уровня гормона, могут оказывать значительное влияние на вероятность их ошибочной оценки (Urban et al., 1988).

Влияние гонадолиберина на гонадотропные клетки осуществляется посредством их связывания со специфическими мембранными рецепторами, которое приводит к агрегации рецепторов и кальцийзависимому выделению ЛГ (Conn ct al., 1981, 1982).

Секреция гонадотропина в гипофизе

Функциональное строение и развитие гипофиза

Обширные данные иммуноцитологических исследований свидетельствуют о том, что секреция ЛГ и ФСГ в гипофизе происходит в клетках одного типа (Moricrty, 1973; Kovacs ct al., 1985). Гонадотропы — клетки, секретирующие ЛГ и ФСГ, составляют примерно 10 — 15 % от общего количества клеток аденогипофиза (передней доли гипофиза) (Moricrty, 1973; Kovacs et al., 1985) и располагаются рассеянно по всему аденогипофизу вблизи кровеносных капилляров. Они легко обнаруживаются в гипофизе плода и неполовозрелых особей (Childs ct al., 1981), однако их количество до момента полового созревания остается небольшим. Кастрация приводит к увеличению количества, а также размера гонадотропных клеток. Клетки аденогипофиза происходят от общих мультипотентных клеток или клеток-предшественников. Генетический анализ мутаций, взаимосвязанных с нарушениями функции гипофиза, возникающими в процессе развития организма, позволили обнаружить молекулярные механизмы развития гипофиза и выделения отдельных клеточных линии (Ingraham et al., 1988; Scully, Rosenfield, 2002). Развитие эмбриона гипофиза и различных типов его клеток управляется скоординированной во времени экспрессией ряда транскрипционных факторов, содержащих гомеодомен. Три гомеобокссодержащих гена Lbx3, Lbx4 и Titfl играют важную роль в раннем органогенезе (Scully, Rosenfeld, 2002). Для клеточной специализации и пролиферации дифференцированных клеток необходима экспрессия транскрипционных факторов Pitl и Propl: Pitl содержит в своем составе POU-снецифический и ДНК-связывающий POU-гомеокомпонент (Scully, Rosenfeld, 2002). Ген Propl кодирует транскрипционный фактор с одним ДНК-связывающим компонентом. Мутации Pitl ассоциированы с дефицитом соматотропного гормона (СТГ), тиреотропного гормона (ТТГ) и пролактина, а мутации Propl помимо дефицита СТГ, пролактина и ТСГ связаны с недостатком ЛГ и ФСГ. Экспрессии Propl и Pitl предшествует экспрессия гена HESX1, мутации в котором связаны с септоптической дисплазией и пангипопитуитаризмом (Parks et al., 1999).

Биохимическое строение и молекулярная биология ЛГ и ФСГ

Семейство гипофизарных гормонов, имеющих гликопротеидную природу, включает ЛГ, ФСГ, ТСГ и хорионический гонадотропин (ХГ) (Sairam, 1983; Ryan ct al., 1987; Gharib ct al., 1990). Все эти гормоны являются гетеродимерами, состоящими из а- и P-составляющих. Первичная последовательность р-составляющих ЛГ, ФСГ, ТТГ и ХГ различных видов практически идентична, биологическая специфичность гормонов определяется разнородными P-составляющими. Значительная гомология между двумя составляющими свидетельствует об их общем происхождении от общего предкового гена. Каждая субъединица в отдельности не обладает биологической активностью, они могут оказывать какое-либо воздействие только после формирования гетеродимера. В составе гетеродимера они соединяются дисульфидными связями, расположение цистеиио-вых остатков имеет большое значение для правильной укладки и формирования трехмерной структуры гликопротеида (Sairam, 1983; Ryan et al., 1987; Gharib et al., 1990); a-составляющая ЛГ содержит две углеводные цепи, связанные с остатками аспарагина, тогда как в состав p-составляющая их может входить одна или две (табл. 21.1) (Baezinger, 1990); P-составляющая ХГ, кроме того, содержит О-связанные олигосахариды, которых нет в составе димера ЛГ (Cole ct al., 1984). Несмотря на то что свободные несвязанные а-субъединицы сскрстируются гипофизом в кровяное русло, принято считать, что секреция свободных P-составляющих таким путем практически не происходит. Возникновение хорионического гонадотропина как самостоятельного гонадотропина в ходе эволюционного развития произошло сравнительно недавно (Komfeld, Kornfcld, 1976; Fiddcs ct al., 1984). В отличие от ЛГ, который можно обнаружить в гипофизе значительного числа видов, ХГ найден только в плаценте некоторых видов млекопитающих, а именно у лошадей, бабуинов и человека (Fiddcs et al., 1984); а- и p-составляющие ЛГ и ФСГ кодируются различными генами (Fiddes et al., 1984). Кластер генов p-составляющие ЛГ-ХГ у человека включает семь ХГ-подобных генов, один из которых — ген liLH-бета (Fiddes ct al., 1984). Общая организация гена р-субъединицы ЛГ, состоящего из четырех экзонов и трех нитронов, подобна строению генов р-субъединиц других гликопротеидных гормонов.

Регуляторная роль ЛГ

Секреция тестостерона клетками Лейдига находится под контролем ЛГ, который связывается с рецепторами, сопряженными с G-белком, на клетках Лейдига и активирует сигнальный путь циклического аденозинмонофосфата (цАМФ). Рецептор лютеинизирующего гормона-хориопического гонадотропина (ЛГ-ХГ-рецептор) характеризуется гомологией с другими рецепторами, сопряженными с G-белком, такими, как родопсин, адренергические, ФСГ- и ТТГ-рецепторами(McFarland et al., 1989; Sprengel et al., 1990). Рецепторы, сопряженные с G-белком, представляют собой трансмембранные белки, обладающие общим структурным мотивом, включающим семь проникающих через мембрану доменов. Эти семь доменов расположены на карбоксильном конце молекулы, который содержит также небольшой участок с цитоплазматической локализацией. В его последовательности находятся несколько сериновых и треониновых остатков, которые могут подвергаться фосфорилированию (McFarland et al., 1989; Sprengel et al., 1990).

Лютеииизирующий гормон стимулирует активность фермента, расщепляющего боковые цепи, (side-chain cleavage enzyme) (Simpson, 1979; Mori, Marsh, 1982) — фермента, ассоциированного с цитохромом Р450, который катализирует превращение {холестерина в прегненолон, ограничивающий скорость этапа биосинтеза тестостерона. Этот гормон увеличивает поступление холестерина к ферменту, расщепляющему боковые цепи, таким образом, увеличивая эффективность реакции превращения холестерина в прегненолон (Simpson, 1979; Mori, Marsh, 1982). Регуляторный белок стероидогенеза (steroidogenesis acute regulatory protein, STAR) делает холестерин доступным для комплекса, расщепляющего боковые цепи, и регулирует скорость биосинтеза тестостерона (Clark, Stocco, 1996). Периферический рецептор бензодиазипина, митохондриальный белок, связывающий холестерин, который принимает участие в транспорте холестерина и представлен в большой концентрации на внешней митохондриальной мембране, также предлагается на роль активного регулятора процесса стероидогеиеза. К долговременным эффектам ЛГ относятся стимуляция экспрессии генов и синтеза ряда ключевых ферментов пути биосин
еза стероидов, включая фермент, расщепляющий боковые цепи, 3-р-гидроксистероид дегидрогеназу, 17-а-гидроксилазу и 17,20-лиазу (Simpson, 1979; Mori, Marsh, 1982). Несмотря на то что ЛГ активирует также сигнальный путь фосфолипазы С, остается неясным, насколько это имеет важное значение для ЛГ-опосредованной стимуляции выработки тестостерона. Кроме того, в контроле стероидогеиеза в клетках Лейдига принимают участие инсулиноподобный фактор роста I; белки, связывающие инсулиноподобный фактор роста; ингибины, активины, трансформирующий фактор роста-p, эпидермальный фактор роста, интсрлейкин-1, основной фактор роста фибробластов, гонадолиберии, вазопрессин и еще одна группа плохо охарактеризованных митохондриальных белков.

Регуляторная роль ФСГ у самцов млекопитающих

ФСГ связывается со специфическими рецепторами клеток Сертоли и стимулирует выработку ряда белков, в числе которых ингибинподобные пептиды, трансферрин, андрогенсвязывающий белок, рецептор андрогенов и 7-глутамилтранспептидаза. Вместе с тем роль ФСГ в регуляции процесса сперматогенеза остается малопонятной. Преобладает точка зрения, согласно которой ЛГ действует на клетки Лейдига, стимулируя выработку в большом количестве тестостерона (Boccabella, 1963; Steinberger, 1971; Sharpe, 1987). Затем тестостерон влияет на сперматогонии и сперматоциты, инициируя процесс их мейотического деления. Предполагается, что ФСГ необходим для спермогенеза, т. е. процесса созревания, в котором спсрматиды развиваются в зрелые сперматозоиды. Однако данные экспериментов на животных и исследований пациентов с идиопатическим гипогонадотропным гипогонадизмом после лечения гонадотропинами показывают, что ФСГ играет более сложную роль в поддержании количественно нормального сперматогенеза.

У крыс и нечеловекообразных приматов тестостерон сам по себе может поддерживать сперматогенез в случае применения после удаления гипофиза или перерезания ножки гипофиза (Marshall et al., 1983; Sharpe et al., 1988; Stager et al., 2004). Однако, если тестостерон применяется спустя некоторое время (через несколько недель или месяцев) после подобной операции, его эффективность в отношении восстановления сперматогенеза существенно снижается. Сперматогенез, который поддерживается у самцов грызунов и нечеловекообразных приматов с удаленным гипофизом путем введения тестостерона, является качественно, но не количественно нормальным (Marshall et al., 1983; Sharpe et al., 1988; Stager et al., 2004). Более эффективной для повторной инициации сперматогенеза по сравнению с тестостероном оказалась его комбинация с ФСГ (Stager et al., 2004). Таким образом, несмотря на то что ЛГ сам по себе может поддерживать или повторно инициировать сперматогенез, для количественно нормальной продукции спермы необходим ФСГ.

У мужчин, у которых дефицит ЛГ и ФСГ возник в препубертатном возрасте, ЛГ или хорионический гонадотропин человека сами по себе не могут инициировать сперматогенез (Bardin et al., 1969; Matsumoto et al., 1983, 1984; Finkel etal., 1985). Однако если дефицит гонадотропинов развивается после того как у пациента произошло половое созревание, ЛГ и чХГ могут самостоятельно инициировать повторно качественно нормальный сперматогенез (Finkel et al., 1985). Таким образом, ФСГ необходим для инициации процесса сперматогенеза, но после его начала для его поддержания достаточно высоких доз тестостерона. Этот факт позволяет предполагать, что ФСГ может принимать участие в определенном виде “программирования», происходящем в период полового созревания, после чего ЛГ может самостоятельно поддерживать процессы развития и созревания половых клеток.

Концентрация андрогенов в семенниках намного выше, чем в сыворотке крови. Однако касательно высокого уровня тестостерона в семенниках существуют достаточно разноречивые мнения (Sharpe, 1987; Sharpe etal., 1988; Stager etal., 2004). Например, стимулирующий эффект экзогенного тестостерона па сперматогенез у крысы не связан с пропорциональным увеличением его внутрисемеиникового уровня. У взрослых обезьян с удаленным гимофизом или после введения антагоиистов гонадолиберина, которым вводили тестостерон, наблюдается прямая зависимость между уровнем тестостерона в семенниках и сперматогенезом (Stager et al., 2004). Метод посмертного сбора тканей семенников влияет на оценки внутрисеменииковой концентрации тестостерона (Stager et al., 2004). Таким образом, взаимосвязь между внутрисеменниковой концентрацией тестостерона, ФСГ и сперматогенезом остается малопонятной. Рецепторы андрогенов обнаруживаются на клетках Сертоли и перитубулярных клетках, на некоторых клетках Лейдига и эндотелиальных клетках небольших артериол. В то же время нам неизвестно о наличии рецепторов андрогенов на половых клетках. Принято считать, что влияние андрогенов на сперматогенез опосредовано через клетки Сертоли, хотя возможно, что тестостерон может также непосредственно действовать на развитие половых клеток. Тестостерон влияет па секрецию белков как сферическими спсрматидами, так и клетками Сертоли. Максимальная экспрессия рецепторов андрогенов наблюдается в стадии VI—VII сперматогенного эпителия, тестостерон регулирует апоптоз половых клеток в зависимости от стадии их развития.

Для трансдукции сигнала ФСГ к половым клеткам требуется участие клеток Сертоли, поскольку рецепторы ФСГ имеются на этом типе клеток, но отсутствуют на половых клетках. Рецептор ФСГ также представляет собой полипептид, сопряженный с G-белком, состоящий из гликозилированиого внеклеточного домена, который соединяется с С-концевым участком, содержащим 7 трансмембранных участков (Sprengel et al., 1990).

Обратная связь в регуляции секреции лютеинизирующего и фолликулостимулирующего гормонов

Обратная регуляция с помощью тестостерона

Тестостерон занимает важное место в регуляции секреции гонадотропинов у самцов посредством обратной связи. У ряда экспериментальных животных после кастрации резко повышается уровень ЛГ и постепенно ФСГ (Yamamoto et al., 1970; Badger et al., 1978). После кастрации повышается уровень мРНК ЛГ-а и I (Gharib et al., 1986) и ФСГ-р (Gharib et al., 1987), при этом изменения содержания ФСГ-а выражены в гораздо меньшей степени.

Посткастрационное повышение содержания ЛГ в сыворотке крови и уровня мРНК ЛГ-р обусловлено как изменением количества гонадотропных клеток, так и гипертрофией отдельных гонадотропов (Childs et al., 1987). Введение тестостерона, начатое сразу после кастрации или вскоре после нее, может ослаблять посткастрационный рост уровня мРНК ЛГ-а и -р, a также уровня ЛГ в сыворотке крови, однако незначительно влияет на уровень мРНК ФСГ-р (Gharib et al., 1986, 1987).

Тестостерон оказывает комплексное влияние на секрецию и синтез ФСГ

Суммарный эффект in vivo применения тестостерона у мужчин в норме заключается в снижении уровня ФСГ в сыворотке крови (Swerdloff et al., 1979; Winters et al., 1979). Однако прямое воздействие тестостерона на выделение ФСГ на уровне гипофиза стимулирующее (Steinberg, Chowdhury, 1977; Bhasin et al., 1987; Gharib et al., 1987). В культуре изолированных клеток гипофиза тестостерон увеличивает выделение ФСГ в среду (Steinberg, Chowdhury, 1977). Это сопровождается увеличением уровня мРНК ФСГ-р в 3—4 раза (Gharib et al., 1990). У интактных самцов мыши при блокировании действия гонадолиберина путем применения его антагониста тестостерон повышает уровень ФСГ дозозависимым образом (Bhasin et al., 1987). Показано, что у кастрированных животных, которым вводили антагонист гонадолиберина, введение тестостерона в постепенно увеличивающихся дозах сопровождается ростом уровня ФСГ в сыворотке крови. Эти данные показывают, что стимулирующий эффект тестостерона на уровень ФСГ в сыворотке крови опосредован не столько воздействием на гонадальный ингибитор ФСГ, сколько непосредственным влиянием на уровне гипофиза. Тестостерон повышает уровень мРНК ФСГ-р, но не ЛГ-р. В то же время у интактных самцов животных тестостерон подавляет стимулированную гонадолиберином секрецию ФСГ, что в результате приводит к снижению уровня ФСГ в сыворотке крови.

При введении человеку и крысам тестостерон в норме подавляет секрецию ЛГ (Santen, 1975; Matsumoto et al., 1984; Veldhuis et al., 1984). Такие подавляющие эффекты проявляются преимущественно на гипоталамическом уровне — это заключение подтверждает факт снижения тестостероном частоты секреторных выбросов ЛГ у мужчин с нормальными гонадами (Matsumoto, Bremncr, 1984; Schcckter et al., 1989; Finkclstcin et al., 1991a). Андрогены не оказывают прямого воздействия на уровень мРНК ЛГ-р в монослойной культуре клеток гипофиза крысы. Сходным образом у самцов крыс после введения антагониста гонадолиберина введение тестостерона, в постепенно увеличивающихся дозах, приводит только к росту уровня мРНК ФСГ-р, но не мРНК ЛГ-р (Bhasin et al., 1987). В отличие от крыс у людей, больных идиоматическим гипогонадотропным гипогонадизмом, амплитуда колебаний ЛГ, вызванных и поддерживаемых периодическим введением гонадолиберина, уменьшается после введения тестостерона, что свидетельствует о том, что у человека тестостерон оказывает дополнительное воздействие на уровне гипофиза, ослабляя секрецию ЛГ в ответ на стимуляцию гонадолиберином (Matsumoto et al., 1984; Schekter et al., 1989; Finkelstein et al., 1991a). Эти исследования показывают, что у мужчин тестостерон или один из его метаболитов ингибируют секрецию гонадотропина на уровне гипофиза и гипоталамуса.

Ингибирующий эффект тестостерона опосредован непосредственно тестостероном и опосредованно его метаболитами — эстрадиолом и дигидротестостероном. Применение ингибиторов ароматазы или 5-а-редуктазы сопровождается увеличением концентрации ЛГ, что согласуется с представлениями о роли эстрадиола и дигидротестостерона в усилении ингибирующего воздействия тестостерона в цепи обратной связи (Santen, 1975; Finkelstein et al., 1991b; Gormley, Rittmaster, 1992). Однако применение не поддающегося ароматизации андрогена дигидротестостерона также подавляет секрецию ЛГ в соответствии с предположением о том, что а

Видео по теме

Эндокриная система, спорт и двигательная активность.
Перевод с англ./под ред. У.Дж. Кремера и А.Д. Рогола. — Э64
Издательство: Олимп. литература, 2008 год.

Что предлагают интернет магазины?
SPORTGUARDIAN.RU
Logo