Препараты макро- и микроэлементов

ПРЕПАРАТЫ МАКРО-И МИКРОЭЛЕМЕНТОВ

Минеральные вещества, наряду с белками, углеводами, жирами и витаминами, являются жизненно важными компонентами пищи человека, необходимыми для построения химических структур живых тканей и осуществления биохимических и физиологических процессов, лежащих в основе жизнедеятельности организма. В состав организма входит большое количество минеральных элементов, причем одни из них (кальций, фосфор, калий, натрий, железо, магний, хлор и сера) содержатся в большом количестве и поэтому называются макроэлементами, а другие (цинк, медь, хром, марганец, кобальт, фтор, никель и др.) — в малых количествах, поэтому их относят к микроэлементам.

Согласно современным представлениям, большинство случаев нарушения обмена макро- и микроэлементов у спортсменов можно отнести к разряду профессиональных или профессионально обусловленных, т. е. связанных с повышенными физическими и психоэмоциональными нагрузками на организм.

Известно, что многие спортсмены при подготовке к соревнованиям, особенно в циклических видах спорта, часто обследуются в специализированных клиниках на предмет выявления дисбалансов микронутриентов с последующей целенаправленной коррекцией отклонений по специально разрабатываемым программам. Так, в США услугами только одной из компаний, выполняющих анализы волос, крови и мочи на содержание макро- и микроэлементов, пользуются более 50 чемпионов и призеров Олимпийских игр. Согласно сообщениям прессы, футболисты ФК «Байер» (Германия) и других клубов регулярно проходят обследование по оценке элементного статуса.

Многие микроэлементы играют ключевую роль в энергетическом обмене, и во время напряженной физической активности степень его в скелетной мышце может увеличиваться в 20— 100 раз. Несмотря на то, что адекватный витаминный и минеральный статус является существенным для сохранения здоровья, крайние состояния дефицита могут проявиться только тогда, когда метаболический обмен достаточно высок. Длительная физическая нагрузка, выполняемая регулярно, может обусловить повышенную потерю микроэлементов или ускорение обмена веществ, что требует увеличения поступления микроэлементов. Повышенное потребление пиши приведет к повышению содержания микроэлементов, но спортсмены, выполняющие тяжелые тренировки, должны обязательно дополнительно принимать железо, кальций и витамины антиоксидантного действия.

Установлено, что спортсменам для сохранения спортивной формы и работоспособности необходимо достаточное снабжение организма такими микроэлементами, как магний, цинк и медь. Потребность в микроэлементах может быть увеличена при значительной их потере в составе пота и мочи при интенсивной физической нагрузке, а также при сбрасывании массы. Алиментарное поступление микроэлементов достаточно для большинства спортсменов. Избыток их при дополнительном потреблении микроэлементов может вызвать нарушения здоровья: при поступлении магния больше 500 мг-сут»1 возможны нарушения деятельности желудочно-кишечного тракта (ЖКТ) и отрицательное влияние на обмен фосфора. Избыток цинка может угнетать усвоение меди в ЖКТ и вызвать ее дефицит; цинк в большом количестве (> 160 мг сут»1) снижает содержание холестерола ЛПВП. Дополнительное поступление этого элемента не должно превышать 15 мг сут-1. Токсическое действие меди возможно при приеме более 20 мг сут»»1, при приеме 10—15 мг неорганической меди могут возникнуть рвота, понос, а при большой дозе — гемолиз. Увеличение потребления микроэлементов не оказывает влияние на производительность, если в рационе спортсменов присутствует достаточное количество необходимых веществ.

Установлено, что прием велосипедистами препарата «PhosFuel», содержащего в одной капсуле 1,0 г Na,HP04, 0,204 г КНС03 и 12,5 мг L-карнозина, не влиял на кислотно-основное состояние при интенсивной анаэробной нагрузке и не улучшал работоспособности при повторении усилия. Однако прием препарата в восстановительный период повышал содержание 2,3-ди-фосфоглицерата и отношение его содержания к содержанию гемоглобина, но лишь у лиц тренированных, улучшая восстановление сил.

Изучение соответствия рациона у женщин-гребцов во время спринтерской фазы соревновательного периода показало, что в среднем потребление углеводов было меньше оптимального уровня, поступление белков — достаточным, но потребление жира было выше рекомендованного. У большинства обследуемых количество потребляемых микроэлементов и витаминов (Mg, Fe, Р, витамины А, С, В,, BJ2, РР) соответствовало нормам, однако количество кальция, цинка, витаминов В6 и В,, достигало у многих лишь 2/3 нормы. Пища, употребляемая за 1,5 или 2 ч до’ выполнения физических нагрузок, содержала углеводов и жидкости меньше оптимума, а жира — больше. Поэтому женщинам-гребцам с большой массой полезно внести в свой рацион изменения, направленные на увеличение в нем количества сложных углеводов, кальция, цинка, витаминов В6 и Вр и снижение содержания жира. Существенное значение имеет и оптимизация потребления жидкости.

Таким образом, процесс адаптации организма спортсменов к повышенным физическим и психоэмоциональным нагрузкам представляет собой сложное явление, затрагивающее различные уровни функциональной интеграции. При этом в совокупности адаптационных процессов, звеньев и механизмов адаптации на фоне повышающихся требований к организму спортсменов весьма часто возникают ситуации локального исчерпания адаптационного резерва, что вызывает отраженное напряжение смежных и, прежде всего, регуляторных звеньев адаптационного процесса. Перспектива развития процесса зависит как от сбалансированного питания спортсменов, так и от содержания в нем витаминов, макро- и микроэлементов.

Изложенные далее сведения о биологической роли отдельных макро- и микроэлементов должны восприниматься синтетически, преломляясь через индивидуальные биохимические особенности организма.

Натрий и калий. Пищевые источники натрия — поваренная соль и соленая пища (рассолы, бульоны, консервированное мясо, кислая капуста). Соли натрия играют особо важную роль в поддержании постоянного объема жидкости в организме. Он также принимает непосредственное участие в транспорте аминокислот, Сахаров и калия в клетки. Чем выше концентрация ионов натрия во внеклеточной жидкости, тем выше способность клеток транспортировать аминокислоты во внутриклеточное пространство, однако избыточное потребление натрия (в виде соли) приводит к задержке жидкости в организме и затрудняет работу сердца и почек.

Диуретики способствуют потере натрия, по- этому постоянное применение этих препаратов может привести к дефициту его в организме. Кофеин также способствует потере натрия и, следовательно, воды, через почки, так как кофеин действует как слабый диуретик. Рацион с высоким содержанием натрия может вызвать большую потерю кальция и магния с мочой, что, возможно, повлечет за собой дефицит этих минералов.

Пищевые источники калия — сушеные абрикосы, дыня, бобы, картофель, авокадо, бананы, брокколи, печень, молоко, ореховое масло, цитрусовые. Соли калия оказывают диуретическое воздействие и, следовательно, усиливают выведение солей натрия из организма. Калий необходим для сократительной функции скелетных мышц. Существенной функцией калия является его участие в регуляции возбудимости мышц, прежде всего сердечной мышцы. Следует помнить, что некоторые диуретики (например, гидрохлортиазид и фуросемид) способствуют выведению калия из организма, поэтому их применение требует повышенного поступления калия в организм. Кофеин также вызывает большую потерю калия через почки и может привести к его дефициту. При наличии дефицита магния трудно откорригировать низкий уровень калия; сначала нужно повысить уровень магния, прежде чем дополнительный прием калия принесет результат.

Как известно, физические нагрузки в условиях жаркого климата вызывают большую потерю с потом натрия и хлора при умеренной потере калия. У спортсменов общий обмен натрия, хлора и калия такой же, как и в основной популяции. У спортсменов, испытывающих высокую степень потоотделения, употребление соли будет замещать потерю NaCl с потом (потеря NaCl может быть выше 6—7 г сут-1). Во время физической нагрузки, длящейся более 3 ч, рекомендуют добавлять натрий в виде NaCl в напитке (концентрация 1,2 г-л~’) в связи с повышенным потоотделением для предупреждения гипонатриемии. С другой стороны, большое потребление NaCl в форме солевых таблеток не рекомендуется.

Показано, что спринтерская тренировка улучшает мышечную ионную регуляцию, связанную с повышенной интенсивной физической нагрузкой при более высоком системном ацидозе. Повышенное мышечное потребление Na+ и К+ в течение последних секунд нагрузки сопровождается большей активацией мышечного Na+—К+ насоса, сниженной клеточной потерей К+ и меньшей степенью утомления. Больший плазменный ацидоз, выявленный после спринтерской тренировки, был вызван более низкой артериальной плазменной [SID] ([SID] = [Na+] + [К+] — [Lac~] — [Сl] ), вследствие низкого плазменного уровня [Na+] и [К+| и более высокого уровня плазменной концентрации лактата (Lac~).

Кальций — это макроэлемент, играющий в организме спортсмена необычайно важную роль в функционировании мышечной ткани, миокарда, нервной системы и костной ткани.

Пищевые источники кальция — молочные продукты, овощи (брокколи, капуста савойская, шпинат, листья репы, капуста белокочанная, капуста цветная, спаржа), яичные желтки, бобы, чечевица, орехи, инжир. Входит в состав основного минерального компонента костной ткани, играет важную роль в осуществлении многих физиологических процессов, необходим для нормального функционирования нервной системы и сократимости мышц. Является активатором ряда ферментов и гормонов, а также важнейшим компонентом свертывающей системы крови. Вместе с магнием обеспечивает нормальную частоту сердечного ритма.

Для эффективного усвоения кальция из желудочно-кишечного тракта необходим витамин D. Стресс может способствовать уменьшению абсорбции кальция из желудочно-кишечного тракта. Фитиновая кислота из отрубей цельного зерна взаимодействует с кальцием с образованием кальциевой соли, которая не всасывается в желудочно-кишечном тракте. В желудке должно присутствовать достаточное количество соляной кислоты для нормального усвоения некоторых соединений кальция, в особенности карбоната. Кроме того, кальций усваивается лучше, если принимать его не натощак, а после легкой еды. Кофе увеличивает выделение кальция почками. Магний может уменьшать усвояемость кальция, однако резкая недостаточность магния также может вызвать гипокальциемию. Железо может способствовать усвоению кальция. Повышенный прием кальция без адекватного приема фосфора (в соотношении 2:1 или более) может препятствовать синтезу или усвоению витамина К, что теоретически может оказать влияние на способность крови к свертыванию.

Достаточное присутствие активного пула кальция реализуется в активизации процессов мышечного сокращения. Усвоение кальция из пищи у спортсменов повышено по сравнению с таковым у людей, ведущих малоподвижный образ жизни. Кальций усваивается в костях, где образует «депо» по принципу пьезоэлектрического эффекта, т. е. переходу кальция в костную ткань способствует двигательная активность.

Остеопороз — редкое явление для молодых спортсменов, находящихся в состоянии постоянных мышечных нагрузок, при условии достаточного поступления кальция в организм. В то же время для спортсменов с большим профессиональным стажем, для лиц, резко закончивших свою спортивную карьеру, а также для спортсменов, находящихся в периоде реабилитации после переломов, травм, дефицит кальция в костях — характерное проявление дисмакроэлементоза.

Как известно, прочность костной ткани определяется ее массой, минеральной плотностью, микроструктурой и свойствами белкового матрикса. При изменениях механических нагрузок в остеобластах развертывается каскад событий, аналогичных возникающим под влиянием гормонов или цитокинов. В результате этого происходит перестройка кости, которая, в свою очередь, индуцирует системный гормональный ответ, влияющий на фосфорно-кальциевый обмен. Механизмы обратной связи регулируют адаптацию костной ткани к изменяющейся нагрузке. Понимание всех этих явлений лежит в основе представлений о механизмах, управляющих новообразованием костной ткани или тормозящих остеогенез. Будучи остеогенным фактором, физическая нагрузка представляет собой «идеальное воздействие», при котором стимулируется новообразование и уменьшается резорбция костных балок. Физическая активность играет роль в увеличении массы костной ткани и стабилизации этого показателя, а иммобилизация оказывает повреждающее воздействие на костную ткань. Остеогенные спортивные программы должны осуществляться непрерывно в течение длительного промежутка времени, поскольку после перерыва масса костной ткани уменьшается.

Полученные экспериментальным путем данные свидетельствуют, что важную роль в механизме защитных эффектов адаптации к физическим нагрузкам при стрессорных, ишемических и реперфузионных повреждениях сердца в условиях целого организма может играть повышение устойчивости сердечной мышцы к избытку иона кальция (Са2+) и катехоламинов. Показаны качественные изменения системы Са2*-транспорта сердечного ритма миокарда — повышение резистентности к высокому уровню Са2+ и продуктам ПОЛ.

Во время тренировки футболисты принимали моногидрат креатина, пируват кальция или плацебо. По сравнению с плацебо и пируватом кальция употребление моногидрата креатина увеличивает массу тела, «тощую» массу тела и уровень прыжка из статического положения. Скорость реакции при приеме моногидрата креатина с пируватом кальция была выше по сравнению с группами, принимавшими только пируват кальция или плацебо.

Определение кальция в поте и моче в дни физической нагрузки и дни отдыха у бегунов показало, что средняя нагрузка в течение 45 мин не повышает потребности в этом элементе.

Существует, однако, точка зрения, согласно которой повышение у спортсменов содержания кальция в волосах и моче следует рассматривать как показатель усиленного кругооборота элемента в организме, что говорит о возрастании подвижности и риске возникновения его дефицита.

Восполнение дефицита кальция у спортсменов осуществляется путем проведения 2—3 раза в год курса приема кальцийсодержащих препаратов. Наряду с уже давно использующимися для этих целей таких препаратов, как кальция карбонат, кальция глюконат, кальция глицерофосфат, в последнее время стали активно применяться препараты, отличающиеся повышенной биодоступностью и биоусвояемостью элемента — кальция глубионат, кальция лактобионат с добавлением витамина С: кальций-С 1000 (Сандоз, Швейцария), кальцинова (КРКА, Словения), а также диетические добавки представляющие собой различные модификации кальция (биокальций для детей, кальцихел для улучшения деятельности мозга, для снижения уровня сахара, жевательные таблетки с кальцием, Гай-Бао). Исходным сырьем для диетической добавки является порошок костного кальция, магния, кремния и фосфора, приготовленный из свежих костей крупного рогатого скота по специальной технологии, обеспечивающей стабилизацию и, следовательно, высокую биодоступность иона кальция, превышающую 90 %.

Весьма перспективной является и другая кальциевая диетическая добавка — «Коралловый кальций», который иногда называют «молок
м моря».

В 1979 г. администрация Института Гиннеса, издающая книгу «Рекорды Гиннеса», командировала британского журналиста на остров Токумо-шима (близ острова Окинава в Японии), чтобы получить интервью у господина Шигешио Изуми, на тот момент — самого старого (по документам) жителя Земли. Журналист был удивлен здоровьем этого 115-летнего человека, который к тому же и работал до 105 лет. Он познакомился со многими долгожителями этого острова. Это были физически крепкие люди, у которых не было проблем со здоровьем.

По настоятельной просьбе журналиста господин Изуми прошел полное медицинское освидетельствование, результаты которого оказались поразительными. Каким образом человек в таком возрасте мог оказаться настолько здоров? Вскоре, однако, было установлено, что все долгожители употребляют воду, качество которой существенно отличается от той, которую пьют остальные японцы. Причина этого отличия — кораллы типа Сан-го, которые встречаются только вокруг Окинавы; именно они (единственные из 2500 видов кораллов) содержат в себе ряд важнейших для поддержания нормальной жизнедеятельности человека компонентов (в частности, кальций, магний, калий, натрий, большое количество жизненно важных редких минералов). Структура кораллов Санго очень похожа на строение человеческих костей, поэтому их широко используют для протезирования. В 1989 г. японское правительство разрешило начать промышленную разработку кораллов Санго. Конечный продукт получил название «Коралловый кальций». Один грамм его упаковывается в бумажный пакетик, похожий на чайный. При помещении такого пакетика в воду ее рН изменяется с 7,0 до 8,5—9,2 в зависимости от концентрации активных ионов кальция, а сама вода насыщается 77 микроэлементами в готовой для усвоения биодоступной ионной форме. Это позволяет усваивать кальций и другие минералы практически полностью (на 90—95 %), в отличие от крупномолекулярных таблетированых форм минералов (15—20 %), усвоение которых зависит и от баланса витаминов (в частности, витамина D), и от состояния желудочно-кишечного тракта, и от концентрации соляной кислоты, и многих других факторов.

Последние из опубликованных исследований французских ученых показали, что при физических нагрузках, постоянных напряженных тренировках у спортсменов вместе с потом выводится огромное количество кальция. В результате невосполнения минеральных запасов организма возникают серьезные проблемы со здоровьем, что приводит к травмам, преждевременному окончанию спортивной карьеры, а иногда и к скоропостижной смерти.

Регулярное употребление воды, обработанной «Коралловым кальцием», позволяет:

  • восстановить необходимое Количество кальция и микроэлементов в организме;
  • снять повышенную возбудимость нервной и мышечной систем;
  • восстановить структуру и физиологические свойства костной и хрящевой тканей, суставов, мышц, нервных окончаний;
  • поднять рН крови, таким образом насыщая ее кислородом;
  • восстановить нормальное протекание обменных процессов на клеточном уровне;
  • вывести радионуклиды, соли тяжелых металлов, токсины, причем с большей эффективностью, чем в результате применения других средств;
  • резко ускорить процессы восстановления при травмах любой степени тяжести.

Все перечисленное свидетельствует об уникальности этого продукта и целесообразности его использования в спорте высших достижений.

В свете последних исследований интересно также применение спортсменами препаратов кальция в сочетании с магнием, таких как Берокка Са + Mg (Ф. Хоффманн-Ля-Рош, Швейцария).

Усвоение кальция усиливается при использовании синергичной комбинации с препаратами магния: магне В6 (Санофи, Франция), био-магний (ЦВМ, Россия), асмаг (Фармаполь, Польша), доломит Са + Mg (Валмарк, Чехия), доловит + Se (Наттерман, ФРГ) и т. д. В случае сочетанного недостатка кальция и магния у спорстменов рекомендуется в первую очередь восполнить дефицит магния (1—2 мес), а затем со второго месяца приступать к сочетанной магниево-кальциевой терапии.

Магний. Пищевые источники — орехи и бобы, необработанные злаки, зелень, шпинат, соя, горох, мелисса, пшеничная мука, креветки, моллюски, крабы. Физиологическая роль магния обусловлена тем, что он является кофактором ряда важнейших ферментов углеводно-фосфорного и энергетического обмена, а также других ферментативных процессов. Магний участвует в превращении глюкозы в энергию, способствует эффективному функционированию нервной системы и мышц, помогает преодолевать стрессы и депрессии, необходим для метаболизма витамина С, кальция, калия, натрия и фосфора, а также для нормальной работы витаминов группы В, поскольку этот металл — необходимый кофактор при образовании тиаминпирофосфата, который должен формироваться в организме, прежде чем станет возможным использование тиамина и других витаминов группы В.

Следует помнить, что кальций может уменьшать усвоение магния, поскольку два этих металла делят между собой общую систему транспорта в кишечнике. Отношение содержания кальция к содержанию магния в рационе должно быть 2:1. Высокое содержание жира в рационе может уменьшить усвоение магния, поскольку жирные кислоты и магний образуют мылоподобные соли, которые не всасываются в ЖКТ. Дополнительный прием фолиевой кислоты может увеличивать потребность в магнии из-за повышения активности ферментов, которым для нормальной работы требуется магний. Железо может уменьшить всасывание магния в кишечнике. Витамин D до некоторой степени стимулирует усвоение магния в кишечнике; однако, поскольку стимулирующий эффект гораздо более сильно сказывается на кальции, дополнительный прием этого витамина может создать относительный дефицит магния. Дефицит витамина Е может понизить уровень магния в тканях. Алкоголь, чай и кофеин увеличивают потерю магния через почки. Потребление большого количества сахара повышает потребность в магнии; это одна из причин того, что сахароза не используется в высококлассных продуктах спортивного питания. Вместе с тем, высокобелковый рацион также увеличивает потребность в магнии, особенно у интенсивно тренирующихся атлетов, и это необходимо учитывать! Спортсменам нужно также помнить, что фуросемид (лазикс) вызывает увеличение потери магния через почки.

Магний является одним из основных кофакторов ферментов: он- необходим для образования высокоэнергетических связей и хорошего функционирования натрий-калиевого насоса. Он обеспечивает проницаемость мембран и регулирует трансмембранную циркуляцию ионов. Эта циркуляция играет важную роль в поляризации мышечных клеток и механизме мышечного сокращения. Проводимость и возбудимость нервного волокна при недостатке магния усиливается. Магний играет основную роль в энергетических процессах, нервно-мышечной передаче и механизме мышечного сокращения.

Причины магниевого дефицита кроются как в изменении технологии сельского хозяйства, так и состава продуктов питания и образа жизни людей в современном мире. Неправильное применение минеральных удобрений приводит к дефициту магния в культурных почвах.

Качественное изменение состава пиши, увеличение доли животных продуктов за счет растительных, высокое потребление белков и жирная пища повышают потребность в магнии, в то время как из-за дополнительной переработки и рафинирования многие продукты его утрачивают. Следует учесть также увеличение потребления алкоголя, который способствует повышенному выделению магния, модные ныне многочисленные курсы голодания и т. п. Необходимо отметить, что принятый в настоящее время в Европе и Америке пищевой стандарт для людей с обычной физической нагрузкой, по мнению диетологов, занижен (по витаминам, макро- и микроэлементам) и требует пересмотра. Пищевые стандарты по витаминам, макро- и микроэлементам для спортсменов находятся в стадии разработок. Так, при исследовании в сыворотке крови и моче уровня магния, цинка и меди у женщин, занимающихся спортом (каратэ, гандбол, баскетбол, бег), и женщин с сидячим образом жизни при употреблении ими этих элементов с пищей было установлено, что ни в одной группе спортсменок в диете не достигнуто рекомендованного минимума для магния (280 мг-сут»1) и цинка (12 мг сут-1), хотя их абсолютное количество было выше, чем у женщин контрольной группы. Минимальное потребление меди баскетболистками и бегуньями выше, чем у гандболисток. Уровень этих элементов в крови и моче не связан ни с их потреблением, ни с видом спортивной деятельности женщин.

Известно, что шоколад и какао относятся к пище, богатой легкоусвояемым магнием, и способны корригировать хронический неглубокий дефицит элемента, однако эти продукты практически исключены из специальных малокалорийных диет для похудения и редко употребляются спортсменами. За рубежом широко внедряют специальные прописи пищевых солей с пониженным содержанием натрия хлорида и обогащенных солями магния, калия (например, соль с пониженным содержанием натрия «Валетек», Россия), однако даже там это мало касается спортивной и восстановительной медицины.

Можно сказать, что спортсмены, культуристы, лица, занимающиеся фитнесом, а также профессиональные танцовщики как бы сами вызывают у себя недостаток магния: их диета крайне редко покрывает потребности в магнии, так как продукты, богатые магнием, очень калорийны (шоколад, миндаль, тахинная халва, лесные орехи, бананы, бобовые, овсяные хлопья и т. д.) и потребляются ими в незначительных количествах.

Помимо недостаточного поступления магния с пищей, у спортсменов еще и повышена потребность в этом элементе из-за высокой и продолжительной физической нагрузки, стрессов и значительных потерь магния с потом (особенно в жару и при большой влажности, а также при плановом посещении спортсменами сауны).

Исследования показали, что у спортсменов уровень плазматического и эритроцитарного магния находится на нижней границе нормы. Самые низкие показатели — у марафонцев, бегунов на длинные дистанции, студентов спортивных вузов, а также у гребцов и футболистов.

Магниевая и вообще биохимическая конституция человека находятся как под генетическим контролем, так и под воздействием факторов внешней среды в самом широком смысле (пища, вода, психоэмоциональное состояние, движение). Для спортсменов и людей тяжелого физического труда эти факторы приобретают особое значение.

Частота встречаемости и глубина дефицита магния зависят от стажа в большом спорте. Значительно чаще глубокий дефицит магния развивается у спортсменов-профессионалов, особенно так называемых пенсионеров (старше 30—35 лет).

Показано, что после максимальной физической нагрузки сывороточный магний в двух группах обследуемых значительно увеличивался, а затем возвращался к исходному состоянию. В контрольной группе улътрафильтрованный сывороточный магний оставался неизменным и после максимальной физической нагрузки, и в период восстановления: в покое — 62 %, после нагрузки — 61,5 % и в период восстановления — 60 %. У элитных спортсменов ультрафильтрованный сывороточный магний значимо снижался после нагрузки (в покое — 60,5 %, после нагрузки — 52 % и в восстановительный период — 60 %). При применении теста Wilk’s Lambda для изучения влияния физической нагрузки на иммуноглобулины и сывороточный магний выявлено, что изменение их параметров одинаково у спортсменов высокой квалификации и в контрольной группе, однако взаимосвязь между ними не выявлена.

Появлению и стабилизации магнийдефицитного состояния способствует дополнительный груз так называемых магнийдефицитных болезней (диабет, артериальная гипертензия, депрессивные состояния, наркомания, алкоголизм и т. п.).

Содержание магния в организме спортсмена нельзя рассматривать вне связи с элементным гомеостазом в целом. Изучение содержания магния в контексте концепции элементного гомеостаза у спортивных гимнастов 8—12 лет по анализу волос выявило лидерство дефицита магния среди 25 изученных элементов. Ни у кого из обследованных спортсменов не было монодефицита магния. Клинически у большинства обследованных с дефицитом магния, превышающим 3-кратное отклонение от нижней границы нормы, определялись нервно-мышечные знаки, свидетельствующие о повышенной возбудимости моторных и нервно-мышечных волокон. Реже магнийдефицитная ситуация приводит к дисбалансу натрия, хрома, железа, калия, селена и марганца. Избыток свинца, зафиксированный у некоторых спортсменов, во всех случаях сопровождался дефицитом магния. Это подтверждает факт четкого антагонизма магния и свинца.

Наиболее полно изучены родственные биохимические взаимоотношения магния с кальцием, марганцем и свинцом. Так, известно, что марганец при дефиците магния берет на себя часть его биохимических функций. Кальций при недостатке в организме магния плохо удерживается в костной ткани, в зубном дентине. Установлена способность магнийсодержащих препаратов вытеснять из организма избыточные количества свинца. Данные последних лет также свидетельствуют о полидефиците магния, чаще всего сопряженном с дефицитом калия, меди и цинка. Как известно, каскад превращений под влиянием холинэстеразы происходит при участии элементной ассоциации магния, цинка, алюминия и кадмия. Некоторые авторы выявили тесную взаимосвязь содержания магния в сыворотке и эритроцитах с содержанием таких металлов, как хром, кобальт, медь, железо, никель.

Элементный анализ волос у пловцов сборной России, участвовавших в летней Олимпиаде в Атланте (1996 г.), проведенный в Центре биотической медицины, выявил недостаток магния и избыток меди, связанный, возможно, с всасыванием последней кожей и слизистыми из воды в бассейнах (соли меди используются в эстетических целях для подкрашивания воды в голубой цвет).

Фосфор. Пищевые источники — молоко, различные сорта мяса, домашняя птица, рыба, яйца, зерновые, орехи, сушеные бобы, горох, чечевица, овощная зелень. Входит в состав нуклеотидов и нуклеиновых кислот, фосфолипидов и коферментов. Вместе с кальцием содержится в основном минеральном компоненте костной ткани. Принимает участие в процессах кодирования, хранения и использования генетической информации, биосинтезе нуклеиновых кислот, белков, росте и делении клеток. Не менее велика роль соединений фосфора в энергетическом обеспечении процессов жизнедеятельности. Макроэргические соединения фосфора — АТФ и креатинфосфат — аккумулируют энергию, высвобождаемую в процессе гликолиза и окислительного фосфорилирования, которая может быть использована для механической (сокращение мышц), электрической (проведение нервного импульса) и химической (биосинтез различных соединений) работы. Важная роль принадлежит соединениям фосфора и в ферментативных процессах. Фосфор входит в состав большинства коферментов, а также является одним из основных веществ, с помощью которых витамины превращаются в их функционально активные коферментные формы.

Следует помнить, что железо может повлиять на способность организма усваивать фосфор, для нормального метаболизма которого требуется достаточное количество витамина D. Организм регулирует баланс между кальцием и фосфором: если рацион содержит слишком много фосфора, это может вызвать выход кальция из костей.

Фосфор в обмене тесно связан с кальцием и играет важную роль в формировании костной ткани. В процессах всасывания из кишечника и окостенения обмен кальция и фосфора проходит параллельно, в сыворотке крови и при почечной экскреции они антагонистичны.

Обмен фосфора регулируется в основном паращитовидными железами. При избыточном его поступлении может повышаться уровень выведения кальция, что создает риск возникновения остеопороза.

Коррекция столь распространенного у спортсменов латентного дефицита фосфора предполагает, в первую очередь, восполнение элемента в составе органических соединений животного происхождения, т. е. соблюдения диеты. Биоусвояемость фосфора максимальна из дорогих сортов рыбы (палтус, семга, аргентина, горбуша, карп), креветок, крабов, а также из так называемых эмбриональных продуктов — икры различных сортов рыб и желтка яиц. Хлеб, макароны, рис, картофель, минеральная вода с газом затрудняют биоусвояемость фосфора. Всасываемость его из ЖКТ потенцирует сухое натуральное виноградное вино в количестве до 100 мл, свежие огурцы, лук, чеснок, фасоль, а также травы (петрушка, укроп, базилик). Много фосфора присутствует в твердых сортах сыра, биоусвояемость его из сыра средняя — 30-70 %.

Антацидные алюминийсодержашие препараты (альмагель, маалокс, ренни и др.) выводят фосфор из организма по принципу антагонизма. Для достижения антацидного эффекта при гиперацидных состояниях у спортсменов рекомендуется применять фосфалюгель или де-нол.

Железо. Пищевые источники — печень (особенно свиная), мозги, яичный желток, белые грибы, зелень петрушки, шпинат, яблоки, персики, чернослив, изюм, отборная пшеница. Этот элемент тесно связан с важнейшими функциями организма, являясь незаменимой составной частью гемоглобина и миоглобина. Железо входит в состав окислительно-восстановительных ферментов, участвует в насыщении мышечной ткани кислородом и играет важную роль в кроветворении. Повышенное потребление железа поможет избежать нежелательных нарушений функций кроветворных органов.

Следует помнить, что излишний кальций (более 2 г в день) конкурирует с железом в кишечнике за всасывание, поэтому постоянное применение дополнительного кальция может вызвать дефицит железа. Железо уменьшает способность усваивать медь и цинк в ионной форме, а они в ответ конкурируют с железом. Пища в желудке уменьшает способность всасывать дополнительное железо, однако лучше всего усваивается железо, содержащееся в красном мясе. Кофе и чай могут уменьшить способность усваивать железо; молоко также может снизить способность к всасыванию железа. Чтобы нормально усваивать и использовать железо, необходимо получать с рационом адекватные количества витаминов В2 и В6. Дефицит витамина А снижает способность к усвоению железа. Белки животного происхождения увеличивают способность к усвоению железа, в то время как соевый белок уменьшает ее. Соли фитиновой кислоты, которые содержатся в хлебных злаках и в овощах темно-зеленой окраски, связывают железо в желудке и препятствуют его всасыванию.

У спортсменов выделяют особую полидефицитную, или так называемую спортивную анемию. Лидирующую позицию среди дефицитарных элементов у

Видео по теме

Что предлагают интернет магазины?
SPORTGUARDIAN.RU
Logo