Силовые тренировки и иммунитет

Нейроэндокринная модуляция иммунной системы при физической нагрузке и повреждениях мышц

Для координации процессов роста и развития, регуляции гомеостаза и ответа организма на стресс необходима согласованная работа эндокринной и нервной систем. Наука, предметом которой является изучение взаимосвязи между этими системами, называется нейроэндокринология. Контроль иммунной системы можно подразделить на локальный — осуществляемый с помощью химических сигналов, генерируемых на клеточном уровне, и системный — посредством управления со стороны нейроэндокринной системы. Вместе с тем между этими тремя системами — нервной, эндокринной и иммунной — существуют сложные анатомические и физиологические взаимодействия (Masek et al., 2003). Все три системы характеризуются наличием рецепторов к общему набору лигандов, в числе которых цитокины, пептидные гормоны и нейротрансмиттеры (Haddad et al., 2002). Таким образом, иммунная система может оказывать влияние на нейроэндокринную систему и наоборот. Физические упражнения представляют для организма своего рода стресс и вызывают стереотипный ответ нейроэндокринной системы на стресс, который впервые был описан Гансом Селье как «общий адаптационный синдром* (Selye, (936, р.32). Сложность нейроэндокринной и иммунной системы такова, что она обеспечивает варьирование иммунного ответа в зависимости от интенсивности и продолжительности упражнений, условий внешней среды, особенностей питания, степени восстановления после предшествующих тренировок и повреждения тканей (Nicman, 1997; Pedersen, Hoffman-Goetz, 2000).

Цель этой главы заключается в проведении анализа ответа нейроэндокринной и иммунной систем на физическую нагрузку с различных точек зрения в контексте: а) острой физической нагрузки; б) физической тренировки; в) повреждения мышечной ткани в результате регулярной двигательной активности. Иммунный ответ на острую физическую нагрузку определяется интенсивностью и продолжительностью нагрузки, степенью восстановления организма и наличием питательных веществ в организме во время регулярной двигательной активности. Во многих отношениях ответная реакция организма и адаптации в случае физической тренировки представляет собой кумулятивное влияние повторяющихся занятий физическими упражнениями и ресурсами, которые предоставлены организму для восстановления и адаптации. Индуцированное физическими упражнениями повреждение мышечной ткани приводит к активации иммунной системы на локальном и системном уровне, а также представляет собой модель для изучения воспалительной ветви функций иммунной системы. Нейроэндокринный иммунный ответ на повреждение и другие стрессовые воздействия на мышцы позволяют изучить возможности роли этой комплексной системы в индукции адаптаций к физическим тренировкам, в частности в гипертрофии мышц. Понимание значения обусловленной физическими нагрузками модуляции иммунной системы, а также возможной роли иммунной системы в формировании физиологических адаптаций к физическим упражнениям имеет важное значение для разработки тренировочных программ оздоровительной и спортивной направленности.

Основные компоненты иммунной системы (по Liles, Van Voorhis, 1995; Shepard, 1997; Elenkov et al., 2000; Rivcst, 2001; Suzuki et al., 2002; Steensbcrg et al., 2003)

Компонент

Место образования /локализация

Основные функции

Лейкоциты

Нейтрофилы

Образуются в костном мозге и циркулируют в системе кровообращения. Основная масса связывается с эндотелиальными клетками сосудов, в частности в легких

Воспаление и естественный иммунитет против инфекций. Инициируют реакции образования свободных радикалов, которые разрушают бактерии и повреждают расположенные по соседству клетки. Удаляют небольшие остатки распада в области инфекции или воспаления путем фагоцитоза

Моноциты /макрофаги

Моноциты образуются в костном мозге, обнаруживаются в крови. Покидая систему кровообращения, моноциты дифференцируются в зрелые макрофаги

Естественный иммунитет против вирусной инфекции и опухолевых клеток, фагоцитоз продуктов клеточного распада, выработка цитокинов, имеющих отношение к воспалительном процессам (TNF-a, IL-ip, IL-6, IL-10, IL-12). После фагоцитоза и активации макрофаги становятся способными презентовать антигены Т-лимфоцитам для активации антигензависимого / приобретенного иммунитета

Лимфоциты

Нормальные клетки-киллеры (NK) (CD3CD16* CD56*)

Образуются в костном мозге, циркулируют в крови, связываются с эндотелиальными клетками сосудов в лимфоидных тканях

Естественный иммунитет, осуществляемый без распознавания основного комплекса гистосовместимости (МНС), например поражение клеток, зараженных вирусом, и некоторых опухолевых клеток. Имеют важное значение для защиты от вирусов и некоторых опухолей на ранних стадиях

Цитотоксические Т-лимфоциты (CD3*CD8*)

Образуются в костном мозге, созревают в тимусе. Зрелые клетки обнаруживаются в лимфатической ткани, в селезенке и в крови

Цитотоксичность, связанная с распознаванием МНС-комплекса. Имеет важное значение для реализации на клеточном уровне приобретенного иммунитета, обеспечивающего поражение инфицированных клеток

Хелперные

Т-лимфоциты

(CD3*CD4*)

Образуются в костном мозге, созревают в тимусе. Зрелые клетки обнаруживаются в лимфатической ткани, в селезенке и в крови

Координация иммунного ответа. Недифференцированные (Тh0) CD4* клетки активируются к дифференцировке клетками Тh1 CD4*, отвечающими за клеточный иммунитет либо Th2 CD4*, осуществляющими регуляцию гуморального иммунитета и некоторые функции воспаления. Небольшое количество клеток CD4*, продуцирующих TGF-P, получили название ТhЗ CD4* клеток

В-лимфоциты (CD19*)

Образуются в костном мозге, после активации антигеном дифференцируются и превращаются в плазматические клетки. Зрелые В-клетки встречаются во многих внеклеточных жидкостях, включая кровь и слизистый секрет, а накапливаются в лимфатических тканях

Стимуляция антигеном и цитокинами со стороны Тh1 CD4* Т-лимфоцитов индуцирует выработку нммуноглобулинов (антител)

Иммуноглобулины (lg)

Вырабатываются в плазматических клетках (В-клетках, активированных к выработке антигенов). Обнаруживаются в крови, слюне, слизистом секрете и повсеместно в организме

Связываются с молекулярными и клеточными антиген а-ми (в частности, бактериальными), формируя комплекс антитело — антиген, который индуцирует фагоцитоз нейтрофилами и макрофагами, направленный на устранение антигена

Цитокины

Интерферон-у

(IFH-у)

Тh0 и Тh1 CD4* Т-лимфоциты, CD8* Т-клетки (подгруппа Tсl), натуральные клетки-киллеры

Стимулирует активацию макрофагов, нейтрофилов и клеток-киллеров, а также выработку антител В-лимфоцитами; ингибирует выработку Th2 цитокина в CD4 Т-клетках

Фактор некроза опухолей a(TNFa)

Вырабатывается моноцитами, макрофагами и клетками -киллерами, в меньшей степени нейтрофилами, Т- и В-лимфоцитами и другими клетками

Противоопухолевая активность, инициация воспалительного процесса, привлечение нейтрофилов и моноцитов, а также индукция синтеза IL-6

Компонент

Место образования /локализация

Основные функции

Интерлейкин-1β (IL-β)

Вырабатывается моноцитами и макрофагами

Индукция церебрального ответа на воспаление, а именно; повышение температуры, стимуляция выработки простагландина Е2, стимуляция экспрессии рецептора IL-2, индукция синтеза IL-6

Интерлейкин-2

(IL-2)

Th0 и Тh1 CD4+ Т-лимфоциты, CD8+ Т-клетки (подгруппа Тс1)

Thl цитокин, мощный стимулятор активности натуральных клеток-киллеров, стимуляция пролиферации лимфоцитов и секреция антител В-клетками

Интерлейкин-4

(IL-4)

Тh0 и Тh1 CD4+ Т-лимфоциты, В-лимфоциты

Стимуляция Тh2 клеток, стимуляция выработки иммуноглобулинов и пролиферации В -клеток, стимуляция аллергического ответа путем выработки IgE, ингибирование продукции цитокинов ТЫ CD4* клетками

Интерлейкин-6

(IL-6)

Тh0 и Тh1 CD4+ Т-лимфоциты, CD8+ Т-клетки (подгруппа Тс1), моноциты и макрофаги, вместе с тем практически все клетки способны вырабатывать IL-6, особенно мышечные клетки

Th2 цитокин стимулирует выработку иммуноглобулинов и пролиферацию В-клеток, индукция выработки IL-2, стимуляция белкового синтеза острой фазы, активация гипоталамо-гипофизарно-надпочечниковой системы, подавление синтеза TNF-a и IL-β, стимуляция синтеза IL-10 и IL-lra

Интерлейкин-8

(IL-8)

Вырабатывается моноцитами и макрофагами, эндотелиальными клетками

Хемокин направляет нейтрофилы к очагу воспаления, стимулирует образование реактивных радикалов кисл о-рода и дегрануляцию с помощью нейтрофилов

Интерлейкин-10 (IL-10)

Вырабатывается Тh0 и Тh1 CD4* Т-лимфоцитами, моноцитами и В-клетками, а также клетками гипоталамуса и гипофиза

Тh2 цитокин, ингибирует выработку цитокинов ТЫ CD4* Т-лимфоцитами, моноцитами и макрофагами, стимулирует пролиферацию В-лимфоцитов и выработку антител

Интерлейкин-12 (IL-12)

Вырабатывается моноцитами

Стимулирует иммунный путь Тh1, стимулирует активность CD8* Т-лимфоцитов и натуральных клеток-киллеров, подавляет секрецию IgE В-лимфоцитами

Трансформирующий фактор роста β (TGF-β)

ТhЗ CD4+ Т-клетки, макрофаги и другие клетки

Подавление активности клеток-киллеров, пролиферации В- и Т-клеток, а также некоторых функции макрофагов; стимуляция секреции IgA В-лимфоцитами

Симпатическая нервная система

В состав автономной нервной системы входят парасимпатическая нервная система, которая осуществляет контроль функционирования организма в состоянии покоя, и симпатическая нервная система, которая обеспечивает способность тела к активным движениям как в случае быстрой моторной реакции на стресс (“ftght-and-flight’ response). Ответная реакция на стресс независимо от его природы координируется совместной деятельностью симпатической нервной и гипоталамо-гипофизарно-надпочечниковой систем (Tsigos, Chrousos, 2002). Симпатическая нервная система выделяет специфические нейротрансмиттеры катехоламиныадреналин и норадреналин. Активация симпатической нервной системы при участии норадреналиновой системы (locus ccruleus — синее пятно) стимулирует выделение адреналина клетками мозгового слоя надпочечников и норадреналина окончаниями аксонов симпатических нейронов. Концентрация этих нейротрансмиттеров в крови во время выполнения физических упражнений повышается, вместе с тем, по относительному содержанию норадреналин превосходит адреналин на несколько порядков (Weicker, Werle, 1991; Kjaer, Dela, 1996). Существует линейная зависимость увеличения концентрации катехоламинов от продолжительности занятия двигательной активностью (Kjaer, Dela, 1996). В то же время зависимость уровня катехоламинов от интенсивности упражнений приближается к экспоненциальной (Kjaer, Dela, 1996).

Миграция лейкоцитов

Наиболее значительным влиянием катехоламинов на иммунную систему является рекрутирование лейкоцитов из мест храпения. Введение адреналина и норадреналина с целью повышения способности организма противостоять физическим нагрузкам либо применение блокады катехоламиновых рецепторов (адренергических рецепторов) во время физических упражнений однозначно свидетельствуют о том, что адреналин (лиганд β1- и β2-адренергических рецепторов) стимулирует миграцию лимфоцитов и нейтрофилов в систему кровообращения во время занятий физическими упражнениями (van Titts et al., 1990; Kap-pel et al., 1991; Benschop et al., 1994; Schedlowski et al., 1996). Норадреналин (значимый гормон для β1- и менее значимый — для β2-адренергических рецепторов) обладает менее заметным действием на лимфоциты в системе кровообращения во время регулярной двигательной активности по сравнению с адреналином. Таким образом, повышение внутриклеточной концентрации циклического аденозинмонофосфата (цАМФ), обусловленное связыванием адреналина с β2-адренергических рецепторами, является основным стимулом, направляющим лимфоциты и нейтрофилы в систему кровообращения (Boxer et al., 1980; Weickr, Werle, 1991; Schedlowski et al., 1996).

Иннервация тканей, в которых происходит формирование и накопление клеток иммунной системы, а именно: тимус, селезенка, лимфатические узлы, миндалины, костный мозг и лимфоидная ткань кишечника, — осуществляется симпатической нервной системой с помощью норадренергических и/или нейропептид Y нервных окончаний (Elcnkov ct al.,2000). Такой прямой контакт с нервной системой играет важную роль в функциональной модуляции иммунных клеток, однако оказывает незначительное влияние на миграции лейкоцитов, обусловленные физической нагрузкой.

Функциональная активность лейкоцитов

Упрощенная точка зрения на катехоламины как вещества, обладающие суммарным иммуносупрессорным эффектом, не позволяет рассматривать эту систему регуляции как способную па более сложный набор реакции (Elenkov ct al., 2000). Острое воздействие катехоламинов на иммунную систему более сложное и проявляется преимущественно в подавлении системы Thl (образование интерлейкина-2 — IL-2, интерферона-у — IFN-y и регуляция клеточного иммунитета), отсутствии прямого воздействия на систему Th2 (выработка интерлейкинов IL-4, IL-S, IL-6 и IL-10, а также регуляция гуморального иммунитета) и неоднозначном воздействии на систему формирования воспалительной реакции. Часть воспалительного ответа на катехоламины представляет собой результат устранения ингибирования синтеза воспалительных цитокинов, которое проявляется в подавлении синтеза интерлейкинов IL-2 и IL-12, т. е. стимуляция посредством снятия ингибирования. В отличие от острой физической нагрузки хроническое воздействие катехоламинов приводит к утрате чувствительности и специфическом для определенных типов клеток подавлении экспрессии β,-адренергических рецепторов или других компонентов клеточных систем передачи сигнала (Elenkov et а)., 2000). Таким образом, острый и хронический стресс могут оказывать на иммунную систему различное воздействие.

Кроме того, катехоламины способны модулировать функцию натуральных клеток-киллеров. И адреналин, и норадреналин (адреналин в особенности) индуцируют увеличение количества клеток-киллеров в системе кровообращения и уменьшение удельной цитотоксической активности этих клеток (Schedlowski et al., 1993; Klokker et al., 1997; Kappel ct a., 1998). Снижение активности, вероятнее всего, — результат обусловленного воздействием катехоламинов снижения образования IL-2 и IL-12-цитокинов, которые способствуют повышению цитотоксичности натуральных клеток-киллеров.

Поскольку индукция многих клеточных реакций осуществляется непосредственно путем повышения концентрации внутриклеточного уровня цАМФ (Border ct al., 1998), было высказано предположение, что функциональная модуляция лимфоцитов в ответ на повышение уровня катехоламинов опосредована макрофагами и оксидом азота (Rabin ct al., 1996). Доказательства существования такого механизма регуляции были получены па модели грызунов (Blank et al., 1997). Пример, связанный с применением острой физической нагрузки, в одном исследовании (Kappel ct al., 1991) позволил показать, что через 2 ч после введения адреналина происходит снижение удельной активности (в расчете на клетку) натуральных клеток-киллеров. В то же время наблюдалось двукратное увеличение количества моноцитов и это послужило поводом для предположения о том, что простагландииы, вырабатываемые моноцитами, подавляют цитолитическую активность клеток-киллеров. В соответствии с этим предположением, в случае подавления образования простагландинов в моноцитах с помощью индометацииа, снижение удельной активности клеток-киллеров также отсутствовало. Это свидетельствует о том, что ингибирование функции клеток-киллеров обусловлено не прямым воздействием адреналина, а простагландинами, вырабатываемыми моноцитами. Однако существуют данные, демонстрирующие снижение активности клеток-киллеров даже в условиях применения индометацина. Эго означает, что рассмотренный механизм реализуется далеко не во всех случаях.

Гипоталамо-гипофизарно-надпочечниковая система

Гипоталамо-гипофизарно-надпочечниковая система передаст сигналы от гипоталамуса к аденогипофизу и далее к коре надпочечников (Tsigos, Cltrousos, 2002; Bcishuizcn, Thijs, 2003). В ответ па разнообразные формы стресса гипоталамус высвобождает коргиколиберин (кортикотропин-рилизинг-гормон) и вазопрессин. Кортиколиберин и в меньшей степени вазопрессен стимулируют выработку адренокортикотропного гормона (АКТГ) в передней доле гипофиза. Основная функция вазопрссснна заключается в стимуляции поглощения жидкости в почках. АКТГ в роли эндокринного гормона по системе кровообращения попадает в надпочечники и стимулирует в коре надпочечников секрецию глюкокортикоидных гормонов, среди которых наиболее значимым является кортизол. Таким образом, кортизол — конечный продукт гипоталамо-гипофизарно-надпочечниковой системы. Кортизол является элементом цепи обратной связи и подавляет секрецию кортиколиберина и адренокортикотропного гормона. Как стероидный гормон, кортизол может диффундировать через плазматическую мембрану и связываться с внутриклеточными рецепторами (Rlccardi et al., 2002). Рецепторный комплекс кортизол — другие глюкокортикоиды влияет па клеточную функцию, главным образом стимулируя и подавляя транскрипцию различных белков, а также более быстрым путем, как в случае Са2*-зависимого механизма (Buckingham et al., 1996). Кортизол подавляет значительное количество иммунных реакции и является ключевым регуляторным элементом, предотвращающим иммунную систему от излишне интенсивного влияния, которое может оказаться разрушительным. Например, если воспалительный процесс будет протекать бесконтрольно, это может привести к обширному разрушению тканей и даже к их гибели (Northoff et al., 1995; Suzuki et al., 2002).

Воздействие кортизола на иммунную систему проявляется в подавлении иммунной функции, в частности воспалительных функций. По этой причине аналоги глюкокортикоидов часто используют для лечения воспалений и аутоиммунных заболеваний (Ashwell et al., 2000). Связывание кортизола с внутриклеточным рецептором глюкокортнкоидов ведет к активации глюкокортикоидзависимого элемента (CRE) и последующих превращений (Pitzalis ct al., 2002). Особый интерес представляет стимуляция аннексика I (ранее носил название липокортин-1) и противовоспалительных белков, например антагониста рецептора 1L-1, и подавления молекул клеточной адгезии (САМ) и цитокинов, участвующих в воспалительной реакции (Levine et al., 1996; Pitzalis ct al., 2002).

Уровень активности гипоталамо-гипофизарно-надпочечниковой системы идеально соответствует диапазону, который при необходимости обеспечивает эффективный иммунный воспалительный ответ и при этом не допускает чрезмерной активности иммунной системы, которая могла бы стать разрушительной для организма. Разнообразные формы физической нагрузки могут вызывать хроническое повышение уровня кортизола и подавление иммунной функции (Buckingham et al., 1996). Например, иммуносупрессия, ассоциированная с депрессией, обусловлена повышением уровня кортизола (Leonard, Song, 1996). И наоборот, при недостаточности коры надпочечников выработка глюкокортикоидов происходит в ограниченном количестве, что влечет за собой повышенную восприимчивость к аутоиммунным и воспалительным заболеваниям (Buckingham et al., 1996). Патологические нарушения, которые приводят к избыточной или недостаточной продукции глюкокортикоидов, называются болезнями Кушинга и Аддисона соответственно. В пределах непатологического спектра активности коры надпочечников па основании величины секреции АКТГ в ответ на стресс выделяют лиц с усиленной и ослабленной реакцией на стресс (low and high responders) (Petridcs ct al., 1997; Dcuster et al., 1999), поэтому можно ожидать вариабельности в величине реакции гипоталамо-гипофизарно-надпочечниковой системы на стресс и существования нескольких факторов, модулирующих эту вариабельность, которая будет также проявляться в вариабельности иммунного ответа на стресс независимо от особенностей стрессового воздействия.

Двустороннее взаимодействие между иммунной и нейроэндокринной системой таково, что цитокины, опосредующие воспаление, в частности фактор некроза опухолей а (TNF-а), интерлейкины IL-ф и IL-6, а также фактор, ингибирующий лейкемию (LIF), могут стимулировать гипоталамо-гипофизарно-надпочечниковую систему и индуцировать выделение кортизола (Mastorakas et al., 1993; Chesnokova, Melmed, 2002; Tsigos, Chrousos, 2002). Фактор, ингибирующий лейкемию (LIF), необходим для секреции АКТГ и кортизола в случае возникновения воспаления, а также может способствовать активации гипоталамо-гипофизарно-надпочечниковой системы, индуцированной TNF-a и IL-ip (Chesnokova, Melmed, 2000, 2002; Chesnokova et al., 2002). Это означает, что химические сигналы, стимулирующие воспалительный процесс, также инициируют систему обратной связи, которая подавляет их собственную активность. Была продемонстрирована также противоположная функция этой взаимосвязи, а именно: лимфоциты могут сек ротировать большинство гипофизарных гормонов (Carr, Blalock, 1990), например, после стимуляции иммунореактнвиым антигеном или IL-12 они продуцируют соматотропный гормон (Malarkey ct al., 2002).

Кроме модуляции функций иммунной системы, глюкокортико иды играют важную роль в обеспечении способности организма должным образом отвечать на стресс, повышая вероятность выживания в стрессовых ситуациях. Они ингибируют секрецию половых стероидов и соматотропного гормона (Tsigos, Chrousos, 2002), благодаря чему снижается расход энергии на несущественные для выживания ростовые процессы. Глюкокортикоиды также подавляют активность гипоталамо-гипофизарио-надпочечниковой системы, результатом чего является снижение уровня метаболизма в покое (Tsigos, Chrousos, 2002). Чтобы удовлетворить энергетические потребности тканей, подвергающихся стрессовому воздействию, глюкокортикоиды стимулируют глюконеогенез, гликогенолиз, липолиз и протеолиз (МсМиггау, Hackney, 2000; Steinacker et al., 2004). Благодаря стимуляции процессов глюконеогенеза и гликогенолиза в печени кортизол способствует поддержанию уровня глюкозы в крови и поэтому рассматривается в качестве гормона, регулирующего метаболизм глюкозы. В целом все это приводит к остановке ростовых процессов, снижению фертильности, уменьшению уровня метаболизма и энергетических потребностей организма, а также увеличению доступности запасов энергетических субстратов организма, которые откладывались “на черный день”.

Миграция лейкоцитов

Влияние глюкокортикоидов на миграцию лейкоцитов из ткани в ткань проявляется значительно позже по сравнению с действием катехоламинов. Изменение количества лейкоцитов обычно достигает максимума через 4 ч после повышения уровня кортизола (Rabin et al., 1996). При этом под воздействием глюкокортикоидов во фракции лейкоцитов происходит уменьшение концентрации лимфоцитов и моноцитов и увеличение доли нейтрофилов (Rabin et al., 1996; Nieman, 1997). Суммарным эффектом является увеличение количества лейкоцитов, обусловленное исключительно выбросом нейтрофилов. Аналоги глюкокортикоидов, применяемые в фармакологии, также вызывают сходные по характеру изменения.

Цитокины

Глюкокортикоиды могут подавлять выработку многих цитокинов, в том числе интерлейкинов IL-1, IL-2, IL-3, IL-4, 1L-5, IL-6, 1L-8, IL-10, IL-13, фактора, стимулирующего колонии гранулоцитов и макрофагов (GM-CSF), TNF-a и IFN-a (Ashwell et al., 2000; Riccanli ct al., 2002). При этом их влияние на выработку цитокинов в Т-хелперных клетках Thl более выражено по сравнению с клетками Th2: например, синтез IL-2 ингибируется значительно сильнее, чем синтез IL-10 (Ashwell et al., 2000). Таким образом, глюкокортикоиды являются мощными ингибиторами клеточного иммунитета и воспаления.

Функциональная активность лейкоцитов

Функциональные последствия геномных и негеномных явлений, обусловленных воздействием глюкокортикоидов, в иммунной системе наблюдаются практически повсеместно. Кортизол ингибирует функцию натуральных клеток киллеров и Т-клеток (Ramirez, Silva, 1997; Zhou et al., 1997; Ashwell ct al., 2000). Активность клеток-киллеров оценивают no их способности лизировать клетки-мишени. Кортизол подавляет активность клеток-киллеров путем уменьшения синтеза их эффскторных белков (Zhou et al., 1997). Клеточный иммунный ответ зависит от клональной пролиферации антигенспецефических Т- и В-клеток. Определение пролиф

Видео по теме

Эндокриная система, спорт и двигательная активность.
Перевод с англ./под ред. У.Дж. Кремера и А.Д. Рогола. — Э64
Издательство: Олимп. литература, 2008 год.

Что предлагают интернет магазины?
SPORTGUARDIAN.RU
Logo