Лечение злокачественных опухолей

Лекарства, взаимодействующие с днк непосредственно

Таблица 7.2 Противоопухолевые препараты

Препараты, взаимодействующие с ДНК

Прямое действие

Алкилирующие агенты: мехлорэтамин гидрохлорид, циклофосфамид, ифосфамид, мелфалан, хлорамбуцил, урацилиприт

Препараты нитрозомочевины: ломустин, кармустин, стрептозоцин

Другие агенты: тиофосфамид, бусульфан, дакарбазин, пипоброман, прокарбазин, цисплатин, карбоплатин, алтретамин

Непрямое действие

Антрациклины: доксорубицин-HCI, даунорубицин-НСl, идарубицин-HCI, эпирубицин, митоксантрон-НСl

Агенты, действующие на топоизомеразу: этопозид, тенипозид, топотекан, иринотекан Другие агенты: блеомицин, дактиномицин, пликамицин

Антиметаболиты

Метотрексат, триметрексат, фторурацил, флоксуридин, капецитабин, цитарабин, гемцитабин

Меркаптопурин, тиогуанин, флударабин, кладрибин, пентостатин Гидроксимочевина

Препараты, взаимодействующие с тубулином

Деполимеризующие агенты: винкристин сульфат, винбластин сульфат, винорелбин, эстрамустин фосфат

Полимеризующие агенты: паклитаксел, доцетаксел

Гормоны

Эстрогены: диэтилстильбэстрол, эстрадиол

Антиэстрогены: тамоксифен

Ингибиторы ароматазы: анастрозол, летрозол, аминоглутетимид, тестолактон

Частичные агонисты гонадотропин-рилизинг гормона: лейпролид, гозерелин Антиандрогены: бикалутамид, флутамид

Прогестины: медроксипрогестерона ацетат, мегестрола ацетат

Андрогены

Разные препараты

Интерфероны

Левамизол-НСl

Аспарагиназа

Митотан

Ингибиторы фосфотирозинкиназы

Радиофармацевтические препараты

Йодид натрия (Nal), 131I

Фосфат натрия, 32Р

Нитрат стронция, 89Sr

ДНК — дезоксирибонуклеиновая кислота

Алкилирующие препараты

Пауль Эрлих в 1898 г. разработал первый противоопухолевый препарат — метилнитрозомочевину. Во время войны 1914-1918 гг. в качестве кожно-нарывного отравляющего вещества на Западном фронте был использован иприт. Попадая на кожу, он вызывал тяжелые кожные поражения, а при вдыхании — отек легких. В США в 1943 г. было получено производное иприта — азотиприт (мехлорэтамин). Когда случайно было обнаружено, что при воздействии на организм он вызывал лимфопению, этот агент стали использовать для лечения пациентов со злокачественными лимфопролиферативными расстройствами; в результате наступало частичное или полное выздоровление, хотя и временное.

Мехлорэтамин, мелфалан, циклофосфамид, хлорамбуцил и ифосфамид получили широкое клиническое применение. Реже использовали азиридины: тиофосфамид, эпоксиды (дибромодульцитал) и алкилалкансульфонаты, в частности бусульфан. Препараты нитрозомочевины кармустин, ломустин и семустин обладают выраженными липофильными свойствами и легко проникают через гематоэнцефалический барьер, поэтому их используют для лечения опухолей головного мозга.

Стрептозоцин представляет cобой монофункциональный алкилирующий агенту нетоксичный для костного мозга; однако стрептозоцин разрушает β-клетки поджелудочной железы, вызывая сахарный диабет.

Механизм действия алкилирующих препаратов

Молекулярный механизм действия алкилирующих препаратов заключается в алкилировании ДНК злокачественных клеток с нуклеофильным замещением. Все алкилирующие вещества образуют ковалентные связи между алкильными (насыщенными атомами углерода) группами и клеточными молекулами и дают реактивные электрофильные метаболиты, которые связываются с нуклеофильными веществами, такими как ДНК (рис. 7.11, 7.12).

Рис. 7.11 Образование реакционно-способного иона карбония (б) из аякияирующего агента, например азотиприта (а), и промежуточное нуклеофильное замещение (SN,) азота гуанина (в, г). Образующийся аддукт может вызвать гидролиз основания и формирование апуринового участка, приводя к изменению образования пары оснований в результате таутомериза-ции с возникновением мутации. Второй аддукт может связаться с другим основанием и сформировать ковалентную связь. Эта реакция требует SN) и зависит только от концентрации препарата.

Рис. 7.12 Реакция нуклеофильного замещения (SNZ) цисплатина с гуаниновым нуклеотидом после гидратации. Цисплатин (а) теряет С1~ и связывается с водой (б); затем группа ОН2 связывается с богатой электронами молекулой азота и замещается с образованием ковалентной связи (в). Поскольку цисплатин является бифункциональным агентом, может образоваться перекрестная связь, и, поскольку скорость реакции зависит и от концентрации цисплатина, и от нейтрофила (г), это кинетическая реакция SN2. Pt (II) — платина.

Мехлорэтамин представляет собой пролекарство. Расщепление вещества происходит спонтанно при физиологическом pH, и ионы хлорэтилдиазония или карбония алкилируют ДНК или белки. Молекулярный механизм действия состоит в алкилировании ДНК опухолевых клеток с нуклеофильным замещением (SN1 или SN2), преимущественно 7N-гуанина, 6О-гуанина и ЗN-цитозина (см. рис. 7.11, 7.12).

Субстраты алкилирования распространены повсюду и включают белки (ферменты, клеточные мембраны) и нуклеотиды; их алкилирование в нормальных клетках объясняет возникновение побочных эффектов. Все атомы О и N пуринов и пиримидинов представляют собой преимущественные субстраты, такие как 6О-гуанин, 7N-гуанин, ЗN-цитозин, ЗN-тимидин и 1N-аденин.

Бифункциональные алкилирующие агенты вызывают более серьезные повреждения ДНК по сравнению с монофункциональными. Образование межцепочечных перекрестных связей (ISC) лучше всего коррелирует с цитотоксическим действием на опухолевые клетки. Некоторые данные показывают, что эти ISC могут преимущественно алкилировать транскрипционно активные области генома. ISC препятствуют репликации ДНК и транскрипции РНК. Монофункциональные продукты реакции (аддукты) вызывают разрывы одноцепочечной ДНК либо спонтанно, либо в результате депуринизации под влиянием эндонуклеаз. С другой стороны, таутомеризация оснований-аддуктов вызывает ошибочное спаривание оснований, являющееся главной причиной мутаций и возможного канцерогенеза/лейкозогенеза в нормальных клетках, подвергнутых действию алкилирующего агента.

Проникновение алкилирующих агентов в опухолевые и нормальные клетки осуществляется путем активного транспорта посредством физиологических транспортеров (азотиприты) или пассивным путем (нитрозомочевина). Так, мехлорэтамин использует нормальный транспортер холина, мелфалан — нормальный транспортер L-глутамина, а цисплатин — нормальный транспортер метионина.

ФАРМАКОКИНЕТИКА. Алкилирующие вещества, за исключением циклофосфамида, имеют очень короткий Т1/2 в плазме. Клиренс совершается быстро в результате спонтанного распада (мехлорэтамин), гидролиза и метаболизма (циклофосфамид). T1/2 мехлорэтамина составляет 10 мин. Уровень мелфалана в крови при пероральном приеме лекарства варьирует вследствие плохой абсорбции (= 30%), а при в/в введении Т1/2 равен 1,8 час. Хлорамбуцил после приема внутрь абсорбируется хорошо (50%), его Т1/2 составляет 1,5-3 час. В целом уровень алкилирующих веществ в организме не изменяется даже при значительном нарушении функции печени и почек.

Из числа алкилирующих агентов наиболее широко используют циклофосфамид. Его T1/2 в плазме более продолжителен, чем у любого алкилирующего агента, за исключением близкородственного ифосфамида. Побочный эффект при использовании этих лекарственных препаратов (миелосупрессия) кратковременный, предсказуемый и некумулятивный. Доступны препараты как для в/в, так и для перорального применения (100% биодоступность). Пик концентрации циклофосфамида в сыворотке является дозозависимым (500 нМ после введения 60 мг/кг).

Циклофосфамид представляет собой пролекарство, требующее для превращения в активный 4-гидроксициклофосфамид окисления в печени системой CYP450 микросом. Вслед за этим происходит спонтанное обратимое образование альдофосфамида в крови, а затем реакция с образованием фосфорамидиприта — активной алкилирующей формы препарата. Эта реакция протекает в крови и клетках опухоли. Из всех метаболитов циклофосфамида 4-гидроксициклофосфамид обладает самым высоким терапевтическим индексом. Родительское (исходное) вещество имеет Т1/2 в сыворотке, равный 3-10 час, тогда как фармакодинамический Т1/2 его алкилирующей активности составляет 8 час. Вещества, индуцирующие ферменты CYP450 (включая сам циклофосфамид), могут усиливать как активацию, так и инактивацию циклофосфамида, причем влияние на уровень в сыворотке непредсказуемо.

Т1/2 ифосфамида в сыворотке равен 15 час; эта величина больше, чем у циклофосфамида, и повышается при увеличении дозы (4-5 г/м2). Стерические препятствия при гидроксилировании боковых хлор-этильных цепей играют клинически важную роль для активации (кольцевое гидроксилирование) ифосфамида.

РЕЗИСТЕНТНОСТЬ. Резистентность к алкилирующим препаратам обусловлена несколькими факторами (см. рис. 7.10):

  • снижением транспорта через мембрану (например, мелфалан, цисплатин);
  • связыванием препарата посредством глутатион-S-трансферазы или металлотионеинами в цитоплазме и инактивированием;
  • метаболизмом с образованием неактивных продуктов (например, такими ферментами, как дегидрогеназа I, или же могут быть гидроксилированы хлорэтильные группы активных связывающих участков циклофосфамида или мелфалана).

ПОБОЧНЫЕ ЭФФЕКТЫ. Дозозависимый побочный эффект всех алкилирующих агентов — миелосупрессия (снижение числа эритроцитов, лейкоцитов и тромбоцитов). Часто возникают тошнота и рвота, а также тератогенез и атрофия гонад, хотя в последнем случае эффект варьирует в зависимости от типа лекарства, лечения, схемы применения и пути введения. С лечением сопряжен также основной риск развития лейкозов и канцерогенеза. Другие побочные эффекты:

  • алопеция при использовании циклофосфамида;
  • интерстициальный пневмонит, вызываемый нитрозомочевиной и бусульфаном;
  • токсические явления со стороны почек и мочевого пузыря при введении циклофосфамида и ифосфамида.

Алкилирующие препараты

  • Повреждают ДНК опухолевых клеток
  • Обладают широким спектром противоопухолевой активности и подавляют иммунитет
  • Активны в отношении пролиферирующих и непролиферирующих клеток
  • Вызывают дозозависимую миелосупрессию
  • Увеличивают риск лейкозогенеза

Индивиды с генетическими дефектами систем репарации ДНК, например при атаксии-телеангиэктазии, синдроме Блума и пигментной ксеродерме, высокочувствительны к действию агентов, повреждающих ДНК. До облучения или применения алкилирующих агентов у таких лиц миелосупрессия может быть повышенной.

Препараты нитрозомочевины

Кармустин

Кумулятивная и замедленная миелосупрессия, а также повреждения других органов ограничивают применение препаратов мочевины. Липофильная природа кармустина обеспечивает его легкое проникновение в ЦНС, и он остается основным лекарственным веществом, используемым для лечения злокачественных опухолей мозга. Реакционноспособная группа хлорэтилдиазония связывается с ДНК и ответственна за цитотоксический и миелосупрессивный эффекты. Предполагается, что побочный продукт кармустина, изоцианат, обусловливает его вредное действие на легкие и фиброз. Кармустин вводят в/в, хотя он обладает хорошей биодоступностью при пероральном приеме. Ломустин и семустин биодоступны в случае приема внутрь (~ 60%). Пик уровня нитрозомочевины составляет 5 мМ, фаза распределения длится 5 мин и в сыворотке равен 70 мин.

Некоторые другие алкилирующие препараты

Прокарбазин

МЕХАНИЗМ ДЕЙСТВИЯ. Прокарбазин сам по себе не обладает цитотоксическим или мутагенным действием, однако активируется в печени, превращаясь в азопродукт с последующим образованием алкилирующего азоксикомпонента. Основной молекулярный механизм действия — алкилирование ДНК (хотя дополнительные механизмы могут включать метилирование, повреждение ДНК, опосредованное свободными радикалами, и подавление синтеза ДНК и белков). Клеточный механизм действия — это хроматидные разрывы и транслокации, следствием чего является терминация клеточного цикла в фазе перехода G1-S.

ФАРМАКОКИНЕТИКА. При пероральном приеме абсорбируется почти 100% прокарбазина. Концентрация в плазме достигает пика в течение 1 час. Прокарбазин и его метаболиты выводятся из плазмы в течение 2 час, и Т1/2 родительского вещества составляет 7 мин. Фенитоин и фенобарбитал повышают как клиренс, так и противоопухолевый эффект прокарбазина, ускоряя продукцию цитотоксических метаболитов.

РЕЗИСТЕНТНОСТЬ к прокарбазину развивается быстро и может быть обусловлена синтезом нуклеиновых кислот, замещающих основания-аддукты, что происходит быстрее в течение активного синтеза ДНК.

ПОБОЧНЫЕ ЭФФЕКТЫ. Прокарбазин инактивирует моноаминоксидазу, вызывая гипертонический криз в случае приема пищи, содержащей тирамин (например, сыра, красного вина). Он вызывает также сильную тошноту при приеме этанола по механизму, сходному с таковым дисульфурама (см. «Лекарства, вызывающие пристрастие», глава 8). Тошнота и рвота достигают значительной степени. Миелосу-прессия возникает после перорального, но не в/в введения, тогда как побочные неврологические эффекты связаны с в/в введением прокарбазина вследствие более высокой концентрации в плазме на пике: это сонливость, спутанность сознания, изменение настроения и парестезии. В качестве антидота можно использовать пиридоксин. Отмечены также аллергические реакции. Прокарбазин является алкилирующим агентом, для которого может оказаться необходимым изменение дозировки, если у пациентов имеет место недостаточность печени или почек.

Дакарбазин

Дакарбазин — пролекарство, которое метаболизируется в печени с высвобождением ионов метилдиазония — активного алкилирующего продукта. Он плохо проникает в спинномозговую жидкость, поэтому непригоден для лечения опухолей ЦНС. Основные ПОБОЧНЫЕ ЭФФЕКТЫ препарата — тошнота и рвота. P-T1/2 составляет 40 мин, абсорбция при приеме внутрь варьирует. 50% вещества экскретируется с мочой, и может оказаться необходимым изменение дозировки, если у пациентов имеет место недостаточность печени или почек.

Алтретамин

Алтретамин (гексаметилмеламин) — пролекарство, которое активируется в печени. Его принимают только перорально, хотя величина абсорбции варьирует. Концентрация достигает пика через 0,5-1 час после приема с двумя Т1/2: 0,5 час и 5-10 час. Высокий процент вещества связывается с белками. Основные ПОБОЧНЫЕ ЭФФЕКТЫ — тошнота и рвота, миелосупрессия возникает у 50% пациентов. Неврологические ПОБОЧНЫЕ ЭФФЕКТЫ, включая изменения настроения и парестезии, могут возникнуть через 1-3 мес после лечения.

Темозоломид

Темозоломид представляет собой препарат, подвергающийся быстрому неферментативному превращению при физиологическом pH в реакционноспособный компонент MTIC, оказывающий цитотоксическое действие в результате алкилирования ДНК. Алкилирование, индуцированное MTIC, заключается первично в метилировании в позициях 60 и 7N остатков гуанина. Темозоломид применяют перорально для лечения опухолей мозга. Наиболее частые ПОБОЧНЫЕ ЭФФЕКТЫ — тошнота, рвота, головная боль и утомление.

Соединения платины

В 1968 г. было сделано наблюдение, что проходящий через платиновые электроды электрический ток вызывает нитевидный рост бактерий, что служит признаком ингибиции синтеза ДНК. На протяжении 3 лет проводили исследование цисплатина на больных раком. Это лекарственное вещество революционизировало лечение рака яичка, увеличив частоту излечения с 5-15 до 70-90% в метастатической стадии заболевания. Цисплатин представляет собой важный компонент лекарственной терапии рака яичников, мочевого пузыря, головы, шеи и легкого.

Цисплатин

Цисплатин (цис-дихлордиаминоплатина II) для своей активации требует замещения С1″ водой (гидратирование) (см. рис. 7.12). Активация протекает медленно (2,5 час), и единственным цитотоксическим, терапевтически активным агентом является цис-энантиомер.

МЕХАНИЗМ ДЕЙСТВИЯ. Цисплатин связывается с гуанином в ДНК и РНК, и это взаимодействие стабилизируют водородные связи. На молекулярном уровне происходит раскручивание и укорочение спирали ДНК. Хотя возникают ISC (10% всех аддуктов), клеточный механизм действия — клеточная инактивация — обусловлен преимущественно образованием внутрицепочечных связей (75-80%). Существует соотношение между числом перекрестных связей, способностью репарировать перекрестное связывание и цитотоксичностью.

РЕЗИСТЕНТНОСТЬ к цисплатину может быть связана с механизмом репарации ДНК, сходным с механизмом, посредством которого удаляются циклобутановые димеры, образующиеся в результате взаимодействия ДНК с ультрафиолетовым светом.

ФАРМАКОКИНЕТИКА. Цисплатин инактивируется в крови и внутриклеточно путем ковалентного связывания с сульфгидрильными группами глутатиона и металлотионеинов. Связывание с белками тканей, клетками крови и белками плазмы также инактивирует цисплатин. Цисплатин отфильтровывается клубочками и активно секретируется в проксимальных извитых канальцах почек. Примерно 25% введенной дозы экскретируются в течение 24 час, и 90% выделяются с мочой, а-, β- и у-Т1/2 составляют 30 мин, 60 мин и 24 час соответственно. При пероральном приеме цисплатин биодоступностью не обладает.

ПОБОЧНЫЕ ЭФФЕКТЫ. Основной побочный эффект цисплатина — токсическое действие на почки (повреждение и некроз канальцев), сходное с эффектом тяжелых металлов. Защитные процедуры состоят в гидратации и диурезе. Миелосупрессия, обычно тромбоцитопения, возникает реже, чем при использовании алкилирующих веществ. При адекватной защите почек дозолимитирующим побочным эффектом становится периферическая нейропатия. Нередко возникают явления ототоксичности с потерей слуха, аллергические реакции и тяжелые тошнота и рвота. Цисплатин противопоказан пациентам с почечным клиренсом креатинина < 60 мл/мин.

Карбоплатин

Карбоплатин представляет собой аналог цисплатина с тем же самым механизмом действия. Разработка препарата имела целью получить менее нефротоксичное лекарство с меньшей вероятностью возникновения тошноты. Внутриклеточный ДНК-аддукт идентичен таковому, образуемому цисплатином. Подобно цисплатину, карбоплатин не метаболизируется и экскретируется почками. Данные по клиренсу креатинина дают возможность дозирования на основе площади под кривой зависимости концентрации от времени выведения (общая лекарственная экспозиция), а не по расчету в мг/м2. Т1/2 карбоплатина сходен с цисплатином. Карбоплатин также обладает миелосупрессивными свойствами.

Оксалиплатин

Оксалиплатин подвергается неферментативному превращению в жидкостях организма с образованием активных производных в результате замещения лабильного оксалатного компонента. Образуется несколько короткоживущих реакционно-способных агентов, включая моноагус- и диагусплатину, которые затем ковалентно связываются с ДНК. Формируются как меж-, так и внутрицепочечные связи в ДНК между двумя прилежащими или разделенными вставочным нуклеотидом остатками гуанина в позиции N7. Эти перекрестные связи ингибируют репликацию и транскрипцию ДНК независимо от стадии клеточного цикла. оксалиплатина в сыворотке составляет 391 час. Сообщается, что наиболее частыми побочными эффектами являются периферическая сенсорная нейропатия, утомляемость, нейтропения, тошнота, рвота и диарея.

Лекарства, повреждающие ДНК опосредованно

Антрациклины

Доксорубицин и даунорубицин широко используют в химиотерапии злокачественных опухолей: препараты занимают второе место после алкилирующих соединений. Доксорубицин эффективен при следующих опухолях:

  • неходжкинская лимфома;
  • болезнь Ходжкина;
  • острые лейкозы;
  • рак молочной железы, легких, желудка и щитовидной железы;
  • саркомы.

Доксорубицин используют для лечения солидных опухолей, тогда как при лейкозах иногда предпочитают даунорубицин, т.к. он вызывает менее выраженный мукозит (воспаление слизистых оболочек). Доксорубицин представляет собой пролекарство. Активный метаболит идарубицин эффективен при лейкозах и может быть применен с терапевтической целью в качестве монотерапии, поскольку его можно принимать перорально. Антрациклины обладают уникальной кардиотоксичностью. Все они являются хинонами, способными к продукции свободных радикалов. Свободные от радикалов хиноны вызывают перекисное окисление саркоплазматического ретикулума сердца, приводя к возникновению Са2+-зависимого некроза миокарда. Этот побочный эффект можно блокировать одновременным введением хелатора железа, дексразоксана. Эпирубицин менее кардиотоксичен, чем другие антрациклины, и его широко используют в Европе. Этот препарат особенно эффективен при раке молочной железы. Кардиотоксичность антрациклинов не зависит от дозы.

МЕХАНИЗМ ДЕЙСТВИЯ. Антрациклины и антрацендионы включаются в ДНК и авидно связываются с ядерным хроматином, образуя тройной комплекс лекарства, включенного в ДНК, и топоизомеразой Тор II, что приводит к разрыву цепи ДНК. Опосредованный Top II механизм, возможно, представляет собой наиболее важный молекулярный механизм действия.

Вторым цитотоксическим механизмом служит образование свободных радикалов, вызывающих посредством окисления-восстановления повреждение злокачественных клеток. Все антрациклины представляют собой хиноны, способные продуцировать свободные радикалы, повреждающие мембраны, белки и липиды. Глутатион и каталаза могут детоксифицировать свободнорадикальные хиноны, и отсутствие каталазы в ткани сердца служит основой внешне избирательной кардиотоксичности антрациклинов. Комплексы

Видео по теме

«Фармакология».

Что предлагают интернет магазины?
SPORTGUARDIAN.RU
Logo